Skip to main content
Log in

Evaluation of New Composite Materials for Marine Applications

  • Research
  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Fibre reinforced composites are widely used in marine structures, from small boats to tidal turbines. However, there are some specific features of the marine environment, notably continuous contact with seawater and hydrostatic pressure loading, which require special attention during material selection and design. This paper first describes test procedures developed over the last 30 years to address these conditions in order to identify and validate lifetime prediction models. Surface vessels and underwater applications are discussed. Then, considerations for future applications are described, with particular emphasis on sustainability and environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Smith, C.S.: Design of Marine Structures in Composite Materials, 1990, Elsevier Science

  2. Davies, P., Lemoine, L. (eds.): Nautical construction with composite materials, Paris, 7th-9th ISBN 2-905434-44-9. (1992)

  3. Mouritz, A.P., Gellert, E., Burchill, P., Challis, K.: Review of advanced composite structures for naval ships and submarines. Comp. Struct. 53, 21–41 (2001)

    Article  Google Scholar 

  4. Graham-Jones, J., Summerscales, J.: Marine Applications of Advanced Fibre-Reinforced Composites, Woodhead Publishing, ISBN 13: 9781782422501 (2015)

  5. https://www.europeanboatingindustry.eu/about-the-industry/facts-and-figures

  6. ISO 12215-5: 2019 Small craft hull construction and scantlings. Part 5: Design pressures for monohulls, design stresses, scantlings determination

  7. https://www.ramsses-project.eu/

  8. http://www.fibreship.eu/

  9. https://www.fibre4yards.eu/

  10. Melot, D.: Present and Future Composites Requirements for the Offshore Oil and Gas Industry, January in Durability of Composites in a Marine Environment 2, eds Davies P, Rajapakse YSD, Springer, (2018). https://doi.org/10.1007/978-3-319-65145-3_9

  11. Rani, M., Choudhary, P., Krishnan, V., Zafar, S.: A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades. Compos. B Eng. 215, 108768 (Jun. 2021). https://doi.org/10.1016/J.COMPOSITESB.2021.108768

  12. Davies, P., Petton, D.: An experimental study of scale effects in marine composites. Compos. Part. A-applied Sci. Manuf. 30(3), 267–275 (1999). https://doi.org/10.1016/S1359-835X(98)00156-0

    Article  Google Scholar 

  13. Di Tomasso, C., Gombos, Z.J., Summerscales, J.: Styrene emissions during gel-coating of composites. J. Clean. Prod. 83, 317–328 (2014). https://doi.org/10.1016/j.jclepro.2014.07.051

    Article  CAS  Google Scholar 

  14. Mouritz, A.P., Kootsookos, A., Mathys, G.: Stability of polyester and vinyl ester-based composites in seawater. J. Mater. Sci. 39, 19 (2004)

    Article  Google Scholar 

  15. Arhant, M., Davies, P.: Thermoplastic matrix composites for marine applications. In Marine Composites. Design and Performance, edited by Pemberton R, Summerscales J and Graham-Jones J, 2019. Woodhead Publishing Series in Composites Science and Engineering. Chapter 2, pp. 31–53 (Elsevier BV). (2019)

  16. https://www.arkema.com/global/en/resources/post/elium-resin-breakthrough-innovation/

  17. Davies, P., Le Gac, P.-Y., Le Gall, M.: Influence of Sea Water Aging on the mechanical behaviour of Acrylic Matrix composites. Appl. Compos. Mater. 24(1), 97–111 (Feb. 2017). https://doi.org/10.1007/s10443-016-9516-1

  18. Pastine, S.: Can epoxy composites be made 100% recyclable ? Reinforced Plastics. Sep. 56(5), 26–28 (2012). https://doi.org/10.1016/S0034-3617(12)70109-1

    Article  Google Scholar 

  19. La Rosa, A.D., Banatao, D.R., Pastine, S.J., Latteri, A., Cicala, G.: Recycling treatment of carbon fibre/epoxy composites: Materials recovery and characterization and environmental impacts through life cycle assessment. Compos. B. 104, 17–25 (2016)

    Article  Google Scholar 

  20. La Rosa, A.D., Blanco, I., Banatao, D.R., Pastine, S.J., Björklund, A., Cicala, G.: Innovative Chemical Process for Recycling Thermosets Cured with Recyclamines® by Converting Bio-Epoxy Composites in Reusable Thermoplastic—An LCA Study, Materials Vol. 11, Page 353, vol. 11, no. 3, p. 353, Feb. 2018, (2018). https://doi.org/10.3390/MA11030353

  21. Kubi, S., UMaine 3D Prints Two New Large Boats for U.S, Marines: Breaking Previous World Record - Advanced Structures & Composites Center. Accessed: Nov. 30, 2023. [Online]. Available: https://composites.umaine.edu/2022/04/11/umaine-3d-prints-two-new-large-boats-for-u-s-marines-breaking-previous-world-record/

  22. ISO 62 Plastics - Determination of Water Absorption: (2008)

  23. Davies, P.: Towards More Representative Accelerated Aging of Marine Composites. In Lee S. (eds) Advances in Thick Section Composite and Sandwich Structures, Springer. (2020). https://doi.org/10.1007/978-3-030-31065-3. Print ISBN 978-3-030-31064-6 Online ISBN 978-3-030-31065-3. pp.507–527

  24. Shen, C.H., Springer, G.S.: Moisture absorption and desorption of composite materials. J. Compos. Mater. 10, 2–6 (1977)

    Article  Google Scholar 

  25. Cocaud, J., Célino, A., Fréour, S., Jacquemin, F.: What about the relevance of the diffusion parameters identified in the case of incomplete Fickian and non-fickian kinetics? J. Compos. Mater. 53(11), 1555–1565 (2019)

    Article  Google Scholar 

  26. Carter, H.G., Kibler, K.G.: Langmuir-Type Model for Anomalous Moisture Diffusion in Composite resins. J. Compos. Mater. 12(2), 118–131 (1978)

    Article  Google Scholar 

  27. Robin, A., Arhant, M., Davies, P., Le Jeune, S., Lolive, E., Bonnemains, T., Habert, B.: Effect of aging on the in-plane and out-of-plane mechanical properties of composites for design of marine structures. Compos. Part. C. 11, 100354 (2023)

    Google Scholar 

  28. Weitsman Y.J.: Fluid effects in polymers and polymeric composites. Springer. (2012). ISBN 978-1-4614-1058-4

  29. Dezulier, Q., Clement, A., et al.: Characterization and modelling of the hygro-viscoelastic behaviour of polymer-based composites used in marine environment. Philosophical Trans. Royal Soc. A: Math. Phys. Eng. Sci. 381(2240), ff101098 (2023)

    Google Scholar 

  30. Rouchon, J.: Certification of large composite aircraft structures. Recent progress and new trends in compliance philosophy (1990), Proc ICAS-90-1.8.1, 1439–1447

  31. Davies, P., Choqueuse, D., Bigourdan, B.: Test-finite element correlations for non-woven fibre-reinforced composites and sandwich panels. Mar. Struct. 7, 2–5 (1994). https://doi.org/10.1016/0951-8339(94)90030-2

    Article  Google Scholar 

  32. Davies, P., Choqueuse, D., Devaux, H.: Failure of polymer matrix composites in marine and off-shore applications. In Failure Mechanisms in Polymer Matrix Composites. Edited by Robinson P, Greenhalgh E, Pinho S. Woodhead Publishing Series in Composites Science and Engineering. Chapter 10, pp.300–336. ISBN 978-1-84569-750-1. (2012)

  33. Davies, P., Bigourdan, B., Choqueuse, D., Lacotte, N., Forest, B.: Development of a Test to Simulate Wave Impact on Composite Sandwich Marine Structures, in ‘Dynamic Failure of Composite and Sandwich Structures’, edited by Abrate S, Castanie B, Rajapakse YDS, Springer, 177–208, ISBN 978-94-007-5328-0. (2013)

  34. Andrews, C., Kirby, G., Breach, D., Taylor, T., Bradley, J.: Investigation into Accelerated Ageing of Glass Reinforced Plastic (GRP) for use in Naval vessels. In: Mallinson, L.G. (ed.) Ageing Studies and Lifetime Extension of Materials. Springer, Boston, MA (2001). https://doi.org/10.1007/978-1-4615-1215-8_18

    Chapter  Google Scholar 

  35. Dalzel-Job, J., Kotsikos, G., Mawella, J.: Service Experience and Life Time Prediction of Naval Composites in Durability of Composites in a Marine Environment, eds Davies P, Rajapakse YSD, Springer, pp239-252. (2014)

  36. Bauer, P., Roy, A., Casari, P., Choqueuse, D., Davies, P., Structural mechanical testing of a full-size adhesively bonded motorboat, Proc. Instn Mech. Engrs Vol. 218, Part, M.: J. Engineering for the Maritime Environment, 259–265 (2004)

  37. Smith, C.S.: Design of submersible pressure hulls in composite materials. Mar. Struct. 141–182 (1991)

  38. Lemière, Y.: The evolution of composites in submarine construction, in Nautical Construction with composite materials, ed. Davies P, Lemoine L, IFREMER Actes de colloque 15, 441–449, ISBN 2-905434-44-9 (1992)

  39. Lasn, K., Mulelid, M.: The effect of processing on the microstructure of hoop-wound composite cylinders. J. Compos. Mater. 54(26), 3981–3997 (2020)

    Article  Google Scholar 

  40. Lan, M., Cartié, D., Davies, P., Baley, C.: Microstructure and tensile properties of carbon–epoxy laminates produced by automated fibre placement: Influence of a caul plate on the effects of gap and overlap embedded defects. Compos. Part. A. 78, 124–134 (2015)

    Article  CAS  Google Scholar 

  41. Humeau, C., Davies, P., Jacquemin, F.: Moisture diffusion under hydrostatic pressure in composites. Mater. Design. 96, 90–98 (2016). https://doi.org/10.1016/j.matdes.2016.02.012

    Article  CAS  Google Scholar 

  42. Arhant, M., Le Gac, P.-Y., Le Gall, M., Burtin, C., Briançon, C., Davies, P.: Effect of sea water and humidity on the tensile and compressive properties of carbon-polyamide 6 laminates. Compos. Part. A. 91, 1 (2016). https://doi.org/10.1016/j.compositesa.2016.10.012

    Article  CAS  Google Scholar 

  43. Chaterjee, S., Adams, D., Oplinger, D.W.: Test methods for composites, A status report: Volume 2. Compression test methods (Vol. 17). Technical Report No. DOT/FAA/CT-93. (1993)

  44. Nunna, S., Ravindran, A.R., Mroszczok, J., Creighton, C., Varley, R.J.: A review of the structural factors which control compression in carbon fibres and their composites. Compos. Struct. 303, 116293 (2023). https://doi.org/10.1016/j.compstruct.2022.116293

    Article  CAS  Google Scholar 

  45. Davies, P., Choqueuse, D., Bigourdan, B., Chauchot, P.: Composite cylinders for deep sea applications, an overview. J. Press. Vessel Technol. 138, 060907 (June 2016). https://doi.org/10.1115/1.4033942

  46. Gruber, M.B., Lamontia, M.A., Smoot, M.A., Peros, V.: Buckling performance of hydrostatic compression loaded 7-inch diameter thermoplastic composite monocoque cylinders. J. Thermoplastic Compos. Mater. 8(January), pp94–108 (1995)

    Article  Google Scholar 

  47. Davies, P., Riou, L., Mazeas, F., Warnier, P.: Thermoplastic composite cylinders for underwater applications, Journal of Thermoplastic Composite Materials, Sept 18 (5), 417–431 (2005)

  48. Arhant, M., Briançon, C., Burtin, C., Davies, P.: Carbon/polyamide 6 thermoplastic composite cylinders for deep sea applications. Compos. Struct. 212, 535–546 (2019)

    Article  Google Scholar 

  49. Mears, D., Pae, K., Sauer, J.: Effects of Hydrostatic pressure on the mechanical behavior of polyethylene and polypropylene. J. Appl. Phys. 40, 4229–4237 (1969). https://doi.org/10.1063/1.1657180]

    Article  CAS  Google Scholar 

  50. Hoppel, C.P.R., Bogetti, T.A., Gillespie, J.W.: Literature Review-effects of Hydrostatic pressure on the mechanical behavior of Composite materials. J. Thermoplast. Compos. Mater. 8(4), 375–409 (1995)

    Article  CAS  Google Scholar 

  51. Davies, P., Peleau, M., Cartié, D., Partridge, I.: Polymer And Composite Fracture Under Deep Sea Pressure Conditions, presented at the The Fourteenth International Offshore and Polar Engineering Conference, Toulon, France, May 2004, Paper Number: ISOPE-I-04-429

  52. Cognard, J.Y., Creac’Hcadec, R., Da Silva, L.F.M., Teixeira, F.G., Davies, P., Peleau, M.: Experimental analysis of the influence of hydrostatic stress on the Behaviour of an Adhesive using a pressure vessel. J. Adhes. 87(7–8), 804–825 (2011)

    Article  CAS  Google Scholar 

  53. Pinto, M., Gupta, S., Shukla, A.: Study of implosion of Carbon/ Epoxy Composite Hollow Cylinders using 3-D digital image correlation. Compos. Struct. 119, 272–286 (2015)

    Article  Google Scholar 

  54. Pinto, M., Shukla, A.: Shock-initiated buckling of Carbon/Epoxy Composite tubes at Sub-critical pressures. Exp. Mech. 56(4), 1–12 (2015)

    Google Scholar 

  55. Gupta, S., LeBlanc, J.M., Shukla, A.: Mechanics of the implosion of Cylindrical shells in a confining tube. Int. J. Solids Struct. 51(23–24), 3996–4014 (2014)

    Article  Google Scholar 

  56. Kohnen, S., Manned Underwater, M.T.S.: Vehicles 2017–2018 Global Industry Overview, Marine Technology Society Journal, 52, 5, 125–151. (2018). https://docserver.ingentaconnect.com/deliver/connect/mts/00253324/v52n5/s14.pdf

  57. AFNOR XP: X10-822-1995 Marine environment. Oceanographic instrumentation

  58. Davies, P., Le Flour, D.: Long term behavior of fibre reinforced structures for deep sea applications, Paper 21, Proc Polymers in Oilfield Engineering, London, p255-268 (2001)

  59. Shorhaug: & al, Significant achievements in composite technology in 2001; Qualification and testing of Composite tethers and risers for Ultra deep water, Deep offshore Technology, DOT 2001, Rio de Janeiro, October (2001)

  60. Salama, M.M., Stjern, G., Storhaug, T., Spencer, B., Echtermeyer, A.: The First Offshore Field Installation for a Composite Riser Joint, in Offshore Technology Conference, OTC 14018, May 6–9, 2002, Houston, TX

  61. Ochoa, O.: Composite Riser Experience and Design Guidance, OTRC Final Project Report. Prepared for the Minerals Management Service (October 2006)

  62. Amaechi, C.V., Chesterton, C., Butler, H.O., Gillet, N., Wang, C., Ja’e, I.A., Reda, A., Odijie, A.C.: Review of Composite Marine risers for deep-water applications: Design, development and mechanics. J. Compos. Sci. 6(3) (2022). Article 96 https://doi.org/10.3390/jcs6030096

  63. De Kanter, J., Steuten, B., Kremers, M., de Boer, H.: Thermoplastic Composite Pipe; Operational Experience in Deepwater and Technology Qualification. In Proceedings of the 20th International Conference on Composite Materials (ICCM-20), Copenhagen, Denmark, 19–24 July 2015; ICCM: Copenhagen, Denmark, ; pp. 1–11. Available online: (2015). http://www.iccm-central.org/Proceedings/ICCM20proceedings/papers/paper-1120-4.pdf

  64. Arhant, M., Davies, P., Paboeuf, S., Nicolas, E.: Reliability of composite tidal turbine blades. Proc. ICCM22 2019. Melbourne, VIC: Engineers Australia, 2019. Availability: ISBN: 9781925627220. pp. 328–337. (2020)

  65. Davies, P., Dumergue, N., Arhant, M., Nicolas, E., Paboeuf, S., Mayorga, P.: Material and structural testing to improve composite tidal turbine blade reliability. Int. Mar. Energy J. 5(1), 57–65 (2022)

    Article  Google Scholar 

  66. Baley, C., Davies, P., Keryvin, V., et al.: Sustainable polymer composite marine structures: Developments and challenges. Submitted to Progress in Materials Science, (2023)

  67. Baley, C., Gomina, M., Breard, J., Bourmaud, A., Davies, P.: Variability of mechanical properties of flax fibres for composite reinforcement. A review. Ind. Crops Prod. 145, 111984 (2020). https://doi.org/10.1016/j.indcrop.2019.111984

    Article  CAS  Google Scholar 

  68. Péron, M., Célino, A., Jacquemin, F., et al.: Hygroscopic stresses in asymmetric biocomposite laminates submitted to various relative humidity conditions. Compos. Part. A. 134, 105896 (2020)

    Article  Google Scholar 

  69. Davies, P., Arhant, M., Grossmann, E.: Seawater ageing of infused flax fibre reinforced acrylic composites. Compos. Part. C: Open. Access. 8, 100246 (2022). https://doi.org/10.1016/j.jcomc.2022.100246

    Article  CAS  Google Scholar 

  70. Baley, C.: Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos. Part. A. 33, 939–948 (2002)

    Article  Google Scholar 

  71. Shah, D.U., Schubel, P.J., Clifford, M.J., Licence, P.: The tensile behaviour of off-axis loaded plant fibre composites: An insight on the non-linear stress-strain response. Polym. Compos. 33(9), 1494–1504 (2012)

    Article  CAS  Google Scholar 

  72. Placet, V., Cisse, O., Boubakar, L.: Nonlinear tensile behaviour of elementary hemp fibres. Part I: Investigation of the possible origins using repeated progressive loading with in situ microscopic observations. Compos. Part. A. 56, 319–327 (2014)

    Article  CAS  Google Scholar 

  73. Rozite, L., Joffe, R., Varna, J., Nystrom, B.: Characterization and modeling of performance of Polymer composites Reinforced with highly non- Linear cellulosic fibers (2012) IOP conf. Series: Mater. Sci. Eng. 31 012005

  74. Davies, P., Verbouwe, W.: Evaluation of Basalt Fibre composites for Marine applications. Appl. Compos. Mater. 25(2), 299–308 (2018). https://doi.org/10.1007/s10443-017-9619-3

    Article  CAS  Google Scholar 

  75. Le Gué, L., Davies, P., Arhant, M., Vincent, B., Verbouwe, W.: Basalt fibre degradation in seawater and consequences for long term composite reinforcement. Compos. Part. A. 179, 108027 (2024). https://doi.org/10.1016/j.compositesa.2024.108027

    Article  CAS  Google Scholar 

  76. Dilkes-Hoffman, L.S., Lant, P.A., Laycock, B., Pratt, S.: The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study. Mar. Pollut. Bull. 142, 15–24 (2019). https://doi.org/10.1016/j.marpolbul.2019.03.020

    Article  CAS  PubMed  Google Scholar 

  77. Le Gué, L., Davies, P., Arhant, M., Vincent, B., Tanguy, E.: Mitigating plastic pollution at sea: Natural seawater degradation of a sustainable PBS/PBAT marine rope. Mar. Pollut. Bull. 193, 115216 (2023). https://doi.org/10.1016/j.marpolbul.2023.115216

    Article  CAS  PubMed  Google Scholar 

  78. ISO 19679:2020: Plastics - Determination of aerobic biodegradation of non-floating plastic materials in a seawater/sediment interface - Method by analysis of evolved carbon dioxide

  79. Viana, G.M., Carlsson, L.A.: Mechanical properties and Fracture characterization of cross-linked PVC foams. J. Sandw. Struct. Mater. 4(2), 99–113 (2002). https://doi.org/10.1177/1099636202004002227

    Article  CAS  Google Scholar 

  80. Da Silva, A., Kyriakides, S.: Compressive response and failure of balsa wood. Int. J. Solids Struct. 44, 25–26 (2007). https://doi.org/10.1016/j.ijsolstr.2007.07.003

    Article  Google Scholar 

  81. Wang, Y., Yang, B., Zhu, H., Peng, Q., Sun, X.: Effect of seawater on the Mechanical properties of PET Foam Sandwich structure. J. Test. Eval. 50(4), 2021–2042 (2022)

    Article  CAS  Google Scholar 

  82. Kassab, R., Sadeghian, P.: Effects of material non-linearity on the structural performance of sandwich beams made of recycled PET foam core and PET fiber composite facings: Experimental and analytical studies. In: Structures, vol. 54, pp. 1259–1277. Elsevier (2023)

  83. Battley, M., Allen, T.: Core failure in sandwich structures subjected to water slamming loads. J. Sandw. Struct. Mater. 21(5), 1751–1772 (2019). https://doi.org/10.1177/1099636219837655

    Article  Google Scholar 

  84. Robin, A., Davies, P., Arhant, M., Le Jeune, S., Lacotte, N., Morineau, E., Ioos, F., Dourlen, P., Cairo, R.: Mechanical performance of sandwich materials with reduced environmental impact for marine structures. J. Sandw. Struct. Mater. 26(2), 99–113 (2024). https://doi.org/10.1177/10996362221127975

    Article  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Peter Beaumont, whose encouragement and enthusiasm will be greatly missed. The work described here was made possible by the collaboration with and expertise of a large number of very competent colleagues and PhD students in the SMASH Laboratory, at the IFREMER Centre in Brittany.

Author information

Authors and Affiliations

Authors

Contributions

All contributions by author 1.

Corresponding author

Correspondence to Peter Davies.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, P. Evaluation of New Composite Materials for Marine Applications. Appl Compos Mater (2024). https://doi.org/10.1007/s10443-024-10232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10443-024-10232-1

Keywords

Navigation