Skip to main content
Log in

Copper Modified Boron Nitride And Graphene Combined To Self-Assemble Three-Dimensional Thermal Conductivity Framework to Improve the Thermal Conductivity of Epoxy Resin

  • Research
  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

With the development of integrated circuits and the miniaturization/ integration of electronic devices, heat dissipation solutions have become an increasingly important issue. The thermal conductivity of polymer-based thermal management materials is typically influenced by the amount of incorporated fillers. However, an innovative solution to increase the thermal conductivity without increasing the total filler content is the improvement of the filler connectivity by using specific surface modifications. Surface modifications using thermal conductive submicron particles can reduce the interfiller distances, acting as thermal bridges between the particles. In this paper, copper submicron particles modified BN (BN@CuSMPs) have been prepared by in situ reduction and mixed with graphene oxide (GO). A three-dimensional BN@CuSMPs/rGO aerogel (CBGA) framework with "point-surface" connection has been prepared by using the self-assembly mode of GO. CBGA/EP composites were then prepared using epoxy resin (EP) as matrix and a vacuum assisted impregnation method. The thermal conductivity of CBGA/EP composites has been found to be 1.918 W m−1 K−1 using a filler content of 19.61%, which was 12.8% higher than that of BN/rGO/EP composites and 909.5% higher than that of pure EP. The thermal resistance of the composites was analyzed using the Foygel model. It was found that the introduction of CuSMPs effectively decreased the thermal resistance between the BN particles, forming a thermal conductive three dimensional network inside the polymer-based material system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Xu, X., Zhou, J., Chen, J.: Thermal transport in Conductive polymer-based materials. Adv Funct Mater 30, 1904704 (2020). https://doi.org/10.1002/adfm.201904704

    Article  CAS  Google Scholar 

  2. Song, J., Wu, L., Zhang, Y.: Thermal conductivity enhancement of alumina/silicone rubber composites through constructing a thermally conductive 3D framework. Polym Bull 77, 2139–2153 (2020). https://doi.org/10.1007/s00289-019-02839-3

    Article  CAS  Google Scholar 

  3. Xie, B., Wang, Y., Liu, H., et al.: Targeting cooling for quantum dots by 57.3°C with air-bubbles-assembled three-dimensional hexagonal boron nitride heat dissipation networks. Chem Eng J 427, 130958 (2022). https://doi.org/10.1016/j.cej.2021.130958

    Article  CAS  Google Scholar 

  4. Luo, H., Liu, J., Yang, Z., et al.: Manipulating thermal conductivity of polyimide composites by hybridizing micro- and nano-sized aluminum nitride for potential aerospace usage. J Thermoplast Compos Mater 33, 1017–1029 (2020). https://doi.org/10.1177/0892705718816352

    Article  CAS  Google Scholar 

  5. Liang, W., Wang, F., Tay, T., et al.: Experimental and Analytical Investigation of Epoxy/MWCNT nanocomposites: Electrical, Thermal properties, and Electric Heating Behavior. Polym. Eng. Sci. 60, 233–242 (2020). https://doi.org/10.1002/pen.25276

    Article  CAS  Google Scholar 

  6. Ren, J., Li, Q., Yan, L., et al.: Enhanced thermal conductivity of epoxy composites by introducing graphene@boron nitride nanosheets hybrid nanoparticles. Mater. Design 191, 108663 (2020). https://doi.org/10.1016/j.matdes.2020.108663

    Article  CAS  Google Scholar 

  7. Huang, T., Li, Y., Chen, M., Wu, L.: Bi-directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae. Compos Sci Technol 198, 108322 (2020). https://doi.org/10.1016/j.compscitech.2020.108322

    Article  CAS  Google Scholar 

  8. Amin, A.D., Amin, E., et al.: A comprehensive review on multi-dimensional heat conduction of Multi-layer and Composite structures: Analytical solutions. J Therm Sci (2022). https://doi.org/10.1007/s11630-021-1517-1

    Article  Google Scholar 

  9. Osman, A., Elhakeem, A., Kaytbay, S., Ahmed, A.: Thermal, electrical and mechanical properties of graphene/nano-alumina/epoxy composites. Mater Chem Phys 257, 123809 (2021). https://doi.org/10.1016/j.matchemphys.2020.123809

    Article  CAS  Google Scholar 

  10. Yıldız, G., Akkoyun, M.: Thermal and electrical properties of aluminum nitride/boron nitride filled polyamide 6 hybrid polymer composites. J Appl Polym Sci 138, 50516 (2021). https://doi.org/10.1002/app.50516

    Article  CAS  Google Scholar 

  11. Liu, Z., Chen, Y., Li, Y., et al.: Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement. Nanoscale 11, 17600–17606 (2019). https://doi.org/10.1039/C9NR03968F

    Article  CAS  PubMed  Google Scholar 

  12. Cao, Q., He, F., Li, Y., et al.: Graphene-carbon nanotube hybrid aerogel/polyethylene glycol phase change composite for thermal management. Fullerenes, Nanotubes Carbon Nanostruct. 1–7 (2020). https://doi.org/10.1080/1536383X.2020.1737933

  13. Xu, F., Lin, T., Bi, H., Huang, F.: Graphene-like carbon with three-dimensional periodicity prepared from organic-inorganic templates for energy storage application. Carbon 111, 128–132 (2017). https://doi.org/10.1016/j.carbon.2016.09.067

    Article  CAS  Google Scholar 

  14. Lin, Y., Chen, J., Jiang, P., Huang, X.: Wood annual ring structured elastomer composites with high thermal conduction enhancement efficiency. Chem Eng J 389, 123467 (2020). https://doi.org/10.1016/j.cej.2019.123467

    Article  CAS  Google Scholar 

  15. Ji, T., Feng, Y., Qin, M., et al.: Thermal conductive and flexible silastic composite based on a hierarchical framework of aligned carbon fibers-carbon nanotubes. Carbon 131, 149–159 (2018). https://doi.org/10.1016/j.carbon.2018.02.002

    Article  CAS  Google Scholar 

  16. Sheng, N., Zhu, R., Dong, K., et al.: Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal conductivity and good shape stability. J. Mater. Chem. A 7, 4934–4940 (2019). https://doi.org/10.1039/C8TA11329G

    Article  CAS  Google Scholar 

  17. Ma, J., Shang, T., Ren, L., et al.: Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material. Chem Eng J 380, 122550 (2020). https://doi.org/10.1016/j.cej.2019.122550

    Article  CAS  Google Scholar 

  18. Huang, J., Yang, W., Zhu, J., et al.: Silver nanoparticles decorated 3D reduced graphene oxides as hybrid filler for enhancing thermal conductivity of polystyrene composites. Compos Part A: Appl Sci Manufac 123, 79–85 (2019). https://doi.org/10.1016/j.compositesa.2019.05.002

    Article  CAS  Google Scholar 

  19. Ren, L., Zeng, X., Zhang, X., et al.: Silver nanoparticle-modified alumina microsphere hybrid composites for enhanced energy density and thermal conductivity. Compos Part A: Appl Sci Manufac 119, 299–309 (2019). https://doi.org/10.1016/j.compositesa.2019.02.004

    Article  CAS  Google Scholar 

  20. Wang, G., Zhao, G., Song, J., Ding, Q.: Study on the tribological properties of copper coated by graphene and h-BN from the atomic scale. Appl Surf Sci 573, 151548 (2022). https://doi.org/10.1016/j.apsusc.2021.151548

    Article  CAS  Google Scholar 

  21. Shen, W., Du, B., Zhuo, H., Chen, S.: Recyclable and reprocessable epoxy-polyhedral oligomeric silsesquioxane (POSS)/mesogenic azobenzene/poly (ethylene-co-vinyl acetate) composites with thermal- and light-responsive programmable shape-memory performance. Chem Eng J 428, 132609 (2022). https://doi.org/10.1016/j.cej.2021.132609

    Article  CAS  Google Scholar 

  22. Zhang, F., Feng, Y., Feng, W.: Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Mater. Sci. Eng. R: Rep. 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580

    Article  Google Scholar 

  23. Xu, C., Miao, M., Jiang, X., Wang, X.: Thermal conductive composites reinforced via advanced boron nitride nanomaterials. Compos. Commun. 10, 103–109 (2018). https://doi.org/10.1016/j.coco.2018.08.002

    Article  Google Scholar 

  24. Liu, X., Wang, Z., Sun, J., et al.: Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities. Compos Sci Technol 202, 108558 (2021). https://doi.org/10.1016/j.compscitech.2020.108558

    Article  CAS  Google Scholar 

  25. Dai, W., Lv, L., Lu, J., et al.: A Paper-Like Inorganic Thermal Interface Material composed of hierarchically structured Graphene/Silicon Carbide Nanorods. ACS Nano acsnano8b07337, acsnano.8b07337 (2019). https://doi.org/10.1021/acsnano.8b07337

    Article  CAS  Google Scholar 

  26. Cui, S., Wu, W., Liu, C., et al.: Modification of the three-dimensional graphene aerogel self-assembled network using a titanate coupling agent and its thermal conductivity mechanism with epoxy composites. Nanoscale 13, 18247–18255 (2021). https://doi.org/10.1039/D1NR04075H

    Article  CAS  PubMed  Google Scholar 

  27. Chen, J., Huang, X., Zhu, Y., Jiang, P.: Cellulose Nanofiber supported 3D interconnected BN Nanosheets for Epoxy nanocomposites with Ultrahigh Thermal Management Capability. Adv Funct Mater 27, 1604754 (2017). https://doi.org/10.1002/adfm.201604754

    Article  CAS  Google Scholar 

  28. Han, J., Du, G., Gao, W., Bai, H.: An Anisotropically High Thermal Conductive Boron Nitride/Epoxy Composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 29, 1900412 (2019). https://doi.org/10.1002/adfm.201900412

    Article  CAS  Google Scholar 

  29. Wang, Y., Chen, Q., Liu, C., et al.: Highly enhanced thermal conductivity of TPU composites with segregated network constructed by the in-situ reduction of copper. J Alloys Compd 941, 168801 (2023). https://doi.org/10.1016/j.jallcom.2023.168801

    Article  CAS  Google Scholar 

  30. An, F., Li, X., Min, P., et al.: Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites. Carbon 126, 119–127 (2018). https://doi.org/10.1016/j.carbon.2017.10.011

    Article  CAS  Google Scholar 

  31. Chen, W., Wang, Z., Zhi, C., Zhang, W.: High thermal conductivity and temperature probing of copper nanowire/upconversion nanoparticles/epoxy composite. Compos Sci Technol 130, 63–69 (2016). https://doi.org/10.1016/j.compscitech.2016.05.004

    Article  CAS  Google Scholar 

  32. Guo, Y., He, J., Wang, H., et al.: Boron nitride-graphene sponge as skeleton filled with epoxy resin for enhancing thermal conductivity and electrical insulation. Polym Compos 40, E1600–E1611 (2019). https://doi.org/10.1002/pc.25095

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by the Chinese German Centre for the Promotion of Science via the National Natural Science Foundation of China (NSFC) and Deutsche Forschungsgemeinschaft (DFG) under [grant number GZ1448] and by National Government Guided Special Funds for Local Science and Technology Development (Shenzhen, China) (No. 2021Szvup041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wu.

Ethics declarations

Conflict of Interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Copper submicron particles were introduced on BN surface and prepared into three dimensional thermal conduction skeleton network.

The decrease of contact thermal resistance is the main factor to improve the thermal conductivity of composites.

The composite materials prepared in this study have both high thermal conductivity and high insulation properties.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wu, W., Drummer, D. et al. Copper Modified Boron Nitride And Graphene Combined To Self-Assemble Three-Dimensional Thermal Conductivity Framework to Improve the Thermal Conductivity of Epoxy Resin. Appl Compos Mater 31, 897–910 (2024). https://doi.org/10.1007/s10443-023-10195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10195-9

Keywords

Navigation