Skip to main content
Log in

Effect of Process Parameters on the Quality of Additively Manufactured PETG-Silk Composite

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Optimization of the print setting is important to achieve the desired product characteristics, which, in turn, reduce the effort of the manufacturer and the cost of production. Natural fiber reinforced PETG composites can be a potential 3D printing raw material for additive manufacturing of medical products like scaffolds, implants, prostheses, and orthoses. But the process parameters of this unique composite material need to be optimized for the fabrication of complex structures. Here, PETG-silk fibroin (PETG-SF) composites were printed by optimizing the process parameters based on single and multi-objective optimization techniques for responses such as minimum porosity, maximum dimensional accuracy, and maximum yield load. For accurate measurement of porosity and dimensional accuracy, micro-CT analysis was employed. Single objective optimization results indicate layer height and printing temperature as the highest contributing factor for maximum dimensional accuracy, maximum yield load, and for minimum porosity. Multi objective optimization result shows high temperature, low layer height, and low speed are the best settings for minimum porosity, maximum yield load, and maximum dimensional accuracy. Finally, the optimized parameters were used to print an organic shaped object to validate the results for the production of patient specific anatomically conformed prosthesis and implants. Altogether, our results show that the process parameters have a significant influence on the 3D printing of natural fiber reinforced composites and a complex structure can be effectively fabricated with the optimized parameter settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings are available at authors and can be shared upon request.

References

  1. Alhijazi, M., Zeeshan, Q., Safaei, B., Asmael, M., Qin, Z.: Recent developments in palm fibers composites: A review. J. Polym. Environ. 28, 3029–3054 (2020). https://doi.org/10.1007/s10924-020-01842-4

    Article  CAS  Google Scholar 

  2. Alhijazi, M., Zeeshan, Q., Qin, Z., Safaei, B., Asmael, M.: Finite element analysis of natural fibers composites : A review. Nanotechnol. Rev. 9(1), 853–875 (2020). https://doi.org/10.1515/ntrev-2020-0069

  3. Singha, A.S., Thakur, V.K.: Mechanical properties of natural fibre reinforced polymer composites. Bull. Mater. Sci. 31, 791–799 (2008). https://doi.org/10.1007/s12034-008-0126-x

    Article  CAS  Google Scholar 

  4. Gunning, M.A., Geever, L.M., Killion, J.A., Lyons, J.G., Higginbotham, C.L.: Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites. Polym. Test. 32, 1603–1611 (2013). https://doi.org/10.1016/j.polymertesting.2013.10.011

    Article  CAS  Google Scholar 

  5. Naduparambath, S., Sreejith, M.P., Jinitha, T.V., Shaniba, V., Aparna, K.B., Purushothaman, E.: Development of green composites of poly (vinyl alcohol) reinforced with microcrystalline cellulose derived from sago seed shells. Polym. Compos. 39, 3033–3039 (2018). https://doi.org/10.1002/pc.24307

    Article  CAS  Google Scholar 

  6. Alhijazi, M., Safaei, B., Zeeshan, Q., Asmael, M.: Modeling and simulation of the elastic properties of natural fiber-reinforced thermosets. Polym. Compos. 42, 3508–3517 (2021). https://doi.org/10.1002/pc.26075

    Article  CAS  Google Scholar 

  7. Meriç, G., Erkmen, E., Kurt, A., Eser, A., Çelik, G.: Biomechanical evaluation of a fiber-reinforced composite prosthesis supported by implants with and without a microthread collar design. J. Dent. Sci. 5, 201–208 (2010). https://doi.org/10.1016/j.jds.2010.11.010

    Article  Google Scholar 

  8. Barbaros, I., Yang, Y., Safaei, B., Yang, Z., Qin, Z., Asmael, M.: State-of-the-art review of fabrication, application, and mechanical properties of functionally graded porous nanocomposite materials. Nanotechnol. Rev. 11, 321–371 (2022). https://doi.org/10.1515/ntrev-2022-0017

    Article  CAS  Google Scholar 

  9. Alhijazi, M., Safaei, B., Zeeshan, Q., Asmael, M., Eyvazian, A., Qin, Z.: Recent developments in Luffa natural fiber composites. Sustainability. 12, 1–25 (2020). https://doi.org/10.3390/su12187683

    Article  CAS  Google Scholar 

  10. Le Duigou, A., Correa, D., Ueda, M., Matsuzaki, R., Castro, M.: A review of 3D and 4D printing of natural fibre biocomposites. Mater. Des. 194, 108911 (2020). https://doi.org/10.1016/j.matdes.2020.108911

    Article  CAS  Google Scholar 

  11. Faruk, O., Bledzki, A.K., Fink, H.P., Sain, M.: Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37, 1552–1596 (2012). https://doi.org/10.1016/j.progpolymsci.2012.04.003

    Article  CAS  Google Scholar 

  12. Diederichs, E., Picard, M., Chang, B.P., Misra, M., Mohanty, A.: Extrusion based 3d printing of sustainable biocomposites from biocarbon and poly(Trimethylene terephthalate). Molecules. 26, 4164 (2021). https://doi.org/10.3390/molecules26144164

    Article  CAS  Google Scholar 

  13. Yeh, C.K., Huang, S.Y., Jayaraman, P.K., Fu, C.W., Lee, T.Y.: Interactive high-relief reconstruction for organic and double-sided objects from a photo. IEEE. Trans. Vis. Comput. Graph. 23, 1796–1808 (2017). https://doi.org/10.1109/TVCG.2016.2574705

    Article  Google Scholar 

  14. Entem, E., Parakkat, A.D., Barthe, L., Muthuganapathy, R., Cani, M.P.: Automatic structuring of organic shapes from a single drawing. Comput. Graph. 81, 125–139 (2019). https://doi.org/10.1016/j.cag.2019.04.006

    Article  Google Scholar 

  15. Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D.: 3D printing of polymer matrix composites: A review and prospective. Compos. B. Eng. 110, 442–458 (2017). https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  16. Wickramasinghe, S., Do, T., Tran, P.: FDM-Based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers. 12, 1–42 (2020). https://doi.org/10.3390/polym12071529

    Article  CAS  Google Scholar 

  17. Chohan, J.S., Singh, R., Boparai, K.S., Penna, R., Fraternali, F.: Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Compos. B. Eng. 117, 138–149 (2017). https://doi.org/10.1016/j.compositesb.2017.02.045

    Article  CAS  Google Scholar 

  18. Batak, B., Çakmak, G., Johnston, W.M., Yilmaz, B.: Surface roughness of high-performance polymers used for fixed implant-supported prostheses. J. Prosthet. Dent. 126, 254.e1–254.e6 (2021). https://doi.org/10.1016/j.prosdent.2020.11.029

    Article  CAS  Google Scholar 

  19. García, E., Núñez, P.J., Chacón, J.M., Caminero, M.A., Kamarthi, S.: Comparative study of geometric properties of unreinforced PLA and PLA-Graphene composite materials applied to additive manufacturing using FFF technology. Polym. Test. 91, 106860 (2020). https://doi.org/10.1016/j.polymertesting.2020.106860

    Article  CAS  Google Scholar 

  20. Dontsov, Y.V., Panin, S.V., Buslovich, D.G., Berto, F.: Taguchi optimization of parameters for feedstock fabrication and FDM manufacturing of wear-resistant UHMWPE-based composites. Materials. 13, 1–26 (2020). https://doi.org/10.3390/ma13122718

    Article  CAS  Google Scholar 

  21. Liu, Z., Wang, Y., Wu, B., Cui, C., Guo, Y., Yan, C.: A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manuf. Technol. 102, 2877–2889 (2019). https://doi.org/10.1007/s00170-019-03332-x

    Article  Google Scholar 

  22. Benfriha, K., Ahmadifar, M., Shirinbayan, M., Tcharkhtchi, A.: Effect of process parameters on thermal and mechanical properties of polymer-based composites using fused filament fabrication. Polym. Compos. 42, 6025–6037 (2021). https://doi.org/10.1002/pc.26282

    Article  CAS  Google Scholar 

  23. Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Experimental investigation and empirical modelling of FDM process for compressive strength improvement. J. Adv. Res. 3, 81–90 (2012). https://doi.org/10.1016/j.jare.2011.05.001

    Article  CAS  Google Scholar 

  24. Özen, A., Auhl, D., Völlmecke, C., Kiendl, J., Abali, B.E.: Optimization of manufacturing parameters and tensile specimen geometry for fused deposition modeling (Fdm) 3d-printed petg. Materials. 14, 2256 (2021). https://doi.org/10.3390/ma14102556

    Article  CAS  Google Scholar 

  25. Aslani, K.E., Vakouftsi, F., Kechagias, J.D., Mastorakis, N.E.: Surface Roughness Optimization of Poly-Jet 3D Printing Using Grey Taguchi Method. In: Proc. - 2019 3rd Int. Conf. Control. Artif. Intell. Robot. Optim. ICCAIRO 2019, pp. 213–218. IEEE (2019). https://doi.org/10.1109/ICCAIRO47923.2019.00041

    Chapter  Google Scholar 

  26. Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Improving dimensional accuracy of Fused Deposition Modelling processed part using grey Taguchi method. Mater. Des. 30, 4243–4252 (2009). https://doi.org/10.1016/j.matdes.2009.04.030

    Article  CAS  Google Scholar 

  27. Aslani, K.E., Chaidas, D., Kechagias, J., Kyratsis, P., Salonitis, K.: Quality performance evaluation of thinwalled PLA 3D printed parts using the taguchi method and grey relational analysis. J. Manuf. Mater. Process. 4, 47 (2020). https://doi.org/10.3390/jmmp4020047

    Article  CAS  Google Scholar 

  28. Vijayasankar, K.N., Mukherjee, S., Pati, F.: Short silk fiber reinforced PETG biocomposite for biomedical applications. Preprints, 20220901441–25 (2022). https://doi.org/10.20944/preprints202209.0144.v1

  29. Barthes, J., Courtial, E.J., Brenet, E., Muller, C.B., Knopf-Marques, H., Marquette, C., Vrana, N.E.: Using 3-D printing and bioprinting technologies for personalized implants. In: Advances in Biomechanics and Tissue Regeneration. Elsevier Inc. (2019). https://doi.org/10.1016/B978-0-12-816390-0.00014-5

    Chapter  Google Scholar 

  30. Camposeco-Negrete, C.: Optimization of FDM parameters for improving part quality, productivity and sustainability of the process using Taguchi methodology and desirability approach. Prog. Addit. Manuf. 5, 59–65 (2020). https://doi.org/10.1007/s40964-020-00115-9

    Article  Google Scholar 

  31. Mys, K., Varga, P., Stockmans, F., Gueorguiev, B., Wyers, C.E., van den Bergh, J.P.W., van Lenthe, G.H.: Quantification of 3D microstructural parameters of trabecular bone is affected by the analysis software. Bone. 142, 115653 (2021). https://doi.org/10.1016/j.bone.2020.115653

    Article  Google Scholar 

  32. Keklikoglou, K., Faulwetter, S., Chatzinikolaou, E., Wils, P., Brecko, J., Kvaček, J., Metscher, B., Arvanitidis, C.: Micro-computed tomography for natural history specimens: a handbook of best practice protocols. Eur. J. Taxon. 522, 1–55 (2019). https://doi.org/10.5852/ejt.2019.522

  33. De Souza, E.T.G., NunesTameirão, M.D., Roter, J.M., De Assis, J.T., De Almeida Neves, A., De-Deus, G.A.: Tridimensional quantitative porosity characterization of three set calcium silicate-based repair cements for endodontic use. Microsc. Res. Tech. 76, 1093–1098 (2013). https://doi.org/10.1002/jemt.22270

    Article  CAS  Google Scholar 

  34. Li, M., Mondrinos, M.J., Chen, X., Gandhi, M.R., Ko, F.K., Lelkes, P.I.: Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J Biomed Mater Res A. 79, 963–973 (2006). https://doi.org/10.1002/jbm.a.30833

    Article  CAS  Google Scholar 

  35. De Santis, R., Ambrosio, L., Nicolais, L.: Polymer-based composite hip prostheses. J. Inorg. Biochem. 79, 97–102 (2000). https://doi.org/10.1016/S0162-0134(99)00228-7

    Article  Google Scholar 

  36. Schwitalla, A.D., Zimmermann, T., Spintig, T., Kallage, I., Müller, W.D.: Fatigue limits of different PEEK materials for dental implants. J. Mech. Behav. Biomed. Mater. 69, 163–168 (2017). https://doi.org/10.1016/j.jmbbm.2016.12.019

    Article  CAS  Google Scholar 

  37. Lin, C.L.: Use of the taguchi method and grey relational analysis to optimize turning operations with multiple performance characteristics. Mater. Manuf. Process 19(2), 209–220 (2004). https://doi.org/10.1081/AMP-120029852

    Article  CAS  Google Scholar 

  38. Nalbant, M., Gökkaya, H., Sur, G.: Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Mater. Des. 28, 1379–1385 (2007). https://doi.org/10.1016/j.matdes.2006.01.008

    Article  CAS  Google Scholar 

  39. Kuo, Y., Yang, T., Huang, G.W.: The use of a grey-based Taguchi method for optimizing multi-response simulation problems. Eng. Optim. 40, 517–528 (2008). https://doi.org/10.1080/03052150701857645

    Article  Google Scholar 

  40. R, S.M., Vinodh, S.: Parametric optimization of fused deposition modelling process using Grey based Taguchi and TOPSIS methods for an automotive component. Rapid Prototyp. J. 27, 155–175 (2021). https://doi.org/10.1108/RPJ-10-2019-0269

    Article  Google Scholar 

  41. Chung Wang, C., Lin, T., Hu, S.: Optimizing the rapid prototyping process by integrating the Taguchi method with the Gray relational analysis. Rapid Prototyp. J. 13, 304–315 (2007). https://doi.org/10.1108/13552540710824814

  42. Senthilkumar, N., Tamizharasan, T., Anandakrishnan, V.: Experimental investigation and performance analysis of cemented carbide inserts of different geometries using Taguchi based grey relational analysis. Meas. J. Int. Meas. Confed. 58, 520–536 (2014). https://doi.org/10.1016/j.measurement.2014.09.025

    Article  Google Scholar 

  43. Awodi, E.: Experimentally predicted optimum processing parameters assisted by numerical analysis on the multi-physicomechanical characteristics of coir fiber reinforced recycled high density polyethylene composites. (2021). https://doi.org/10.21203/rs.3.rs-591200/v1

  44. Dickson, A.N., Abourayana, H.M., Dowling, D.P.: 3D printing of fibre-reinforced thermoplastic composites using fused filament fabrication-A review. Polymers. 12, 2188 (2020). https://doi.org/10.3390/POLYM12102188

    Article  CAS  Google Scholar 

  45. van de Werken, N., Koirala, P., Ghorbani, J., Doyle, D., Tehrani, M.: Investigating the hot isostatic pressing of an additively manufactured continuous carbon fiber reinforced PEEK composite. Addit. Manuf. 37, 101634 (2021). https://doi.org/10.1016/j.addma.2020.101634

    Article  CAS  Google Scholar 

  46. Mühl, T., Binnebösel, M., Klinge, U., Goedderz, T.: New objective measurement to characterize the porosity of textile implants. J. Biomed Mater. Res. - Part B Appl. Biomater. 84, 176–183 (2008). https://doi.org/10.1002/jbm.b.30859

    Article  CAS  Google Scholar 

  47. Spector, M., Michno, M.J., Smarook, W.H., Kwiatkowski, G.T.: A high-modulus polymer for porous orthopedic implants: Biomechanical compatibility of porous implants. J. Biomed. Mater. Res. 12, 665–677 (1978). https://doi.org/10.1002/jbm.820120508

    Article  CAS  Google Scholar 

  48. Pascual-González, C., San Martín, P., Lizarralde, I., Fernández, A., León, A., Lopes, C.S., Fernández-Blázquez, J.P.: Post-processing effects on microstructure, interlaminar and thermal properties of 3D printed continuous carbon fibre composites. Compos. Part B Eng. 210, 108652 (2021). https://doi.org/10.1016/j.compositesb.2021.108652

    Article  CAS  Google Scholar 

  49. Kabir, S.M.F., Mathur, K., Seyam, A.F.M.: A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties. Compos. Struct. 232, 111476 (2020). https://doi.org/10.1016/j.compstruct.2019.111476

    Article  Google Scholar 

  50. Sanders, J.E., Rogers, E.L., Sorenson, E.A., Lee, G.S., Abrahamson, D.C.: CAD/CAM transtibial prosthetic sockets from central fabrication facilities: How accurate are they? J. Rehabil. Res. Dev. 44, 395–405 (2007). https://doi.org/10.1682/JRRD.2006.06.0069

    Article  Google Scholar 

  51. Beniak, J., Križan, P., Šooš, Matuš, M.: Research on shape and dimensional accuracy of FDM produced parts. IOP Conf. Ser. Mater. Sci. Eng. 501, 1–8 (2019). https://doi.org/10.1088/1757-899X/501/1/012030

    Article  Google Scholar 

  52. Boschetto, A., Bottini, L.: Accuracy prediction in fused deposition modeling. Int. J. Adv. Manuf. Technol. 73, 913–928 (2014). https://doi.org/10.1007/s00170-014-5886-4

    Article  Google Scholar 

  53. Ho, M.P., Wang, H., Lau, K.T., Leng, J.: Effect of silk fiber to the mechanical and thermal properties of its biodegradable composites. J. Appl. Polym. Sci. 127, 2389–2396 (2013). https://doi.org/10.1002/app.37539

    Article  CAS  Google Scholar 

  54. Faust, J.L., Kelly, P.G., Jones, B.D., Roy-Mayhew, J.D.: Effects of coefficient of thermal expansion and moisture absorption on the dimensional accuracy of carbon-reinforced 3D printed parts. Polymers. 13, 3167 (2021). https://doi.org/10.3390/polym13213637

    Article  CAS  Google Scholar 

  55. Blok, L.G., Longana, M.L., Yu, H., Woods, B.K.S.: An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit. Manuf. 22, 176–186 (2018). https://doi.org/10.1016/j.addma.2018.04.039

    Article  CAS  Google Scholar 

  56. Dey, A., Yodo, N.: A systematic survey of FDM process parameter optimization and their influence on part characteristics. J. Manuf. Mater. Process. 3, 64 (2019). https://doi.org/10.3390/jmmp3030064

    Article  CAS  Google Scholar 

  57. Liu, X., Zhang, M., Li, S., Si, L., Peng, J., Hu, Y.: Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method. Int. J. Adv. Manuf. Technol. 89, 2387–2397 (2017). https://doi.org/10.1007/s00170-016-9263-3

    Article  Google Scholar 

  58. Gebisa, A.W., Lemu, H.G.: Influence of 3D printing FDM process parameters on tensile property of ultem 9085. Procedia Manuf. 30, 331–338 (2019). https://doi.org/10.1016/j.promfg.2019.02.047

    Article  Google Scholar 

  59. Christiyan, K.G.J., Chandrasekhar, U., Venkateswarlu, K.: A study on the influence of process parameters on the mechanical properties of 3D printed ABS composite. IOP. Conf. Ser. Mater. Sci. Eng. 114, 012109 (2016). https://doi.org/10.1088/1757-899X/114/1/012109

    Article  Google Scholar 

  60. Heinz, S.R., Wiggins, J.S.: Uniaxial compression analysis of glassy polymer networks using digital image correlation. Polym. Test. 29, 925–932 (2010). https://doi.org/10.1016/j.polymertesting.2010.08.001

    Article  CAS  Google Scholar 

  61. Zorzetto, L., Ruffoni, D.: Wood-inspired 3D-printed helical composites with tunable and enhanced mechanical performance. Adv. Funct. Mater. 29, 1–9 (2019). https://doi.org/10.1002/adfm.201805888

    Article  CAS  Google Scholar 

  62. Chand, Y.B., Mahendra, J., Jigeesh, N., Mahendra, L., Shivasubramanian, L., Perika, S.B.: Comparison of stress distribution and deformation of four prosthetic materials in full-mouth rehabilitation with implants: A three-dimensional finite element study. J. Contemp. Dent. Pract. 21, 1210–1217 (2020). https://doi.org/10.5005/jp-journals-10024-2959

    Article  Google Scholar 

  63. Nisja, G.A., Cao, A., Gao, C.: Short review of nonplanar fused deposition modeling printing. Mater. Des. Process. Commun. 3, 1–11 (2021). https://doi.org/10.1002/mdp2.221

    Article  Google Scholar 

  64. Abouzaid, K., Bassir, D., Guessasma, S., Yue, H.: Modelling the process of fused deposition modelling and the effect of temperature on the mechanical, roughness, and porosity properties of resulting composite products. Mech. Compos. Mater. 56, 805–816 (2021). https://doi.org/10.1007/s11029-021-09925-6

    Article  Google Scholar 

  65. Braconnier, D.J., Jensen, R.E., Peterson, A.M.: Processing parameter correlations in material extrusion additive manufacturing. Addit. Manuf. 31, 100924 (2020). https://doi.org/10.1016/j.addma.2019.100924

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding support from the MHRD, Gov. of India, and DiponED BioIntelligence, Bangalore, India, for the UAY grant (F.No.21/2015-TS.II/TC, Project No. 35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falguni Pati.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

K N, V., Pati, F. Effect of Process Parameters on the Quality of Additively Manufactured PETG-Silk Composite. Appl Compos Mater 30, 135–155 (2023). https://doi.org/10.1007/s10443-022-10074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10074-9

Keywords

Navigation