Skip to main content

Advertisement

Log in

Physics-based Computational Method Predicting the Dielectric Properties of Polymer Nanocomposites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The dielectric properties of polymer nanocomposites (PNCs) are crucial in designing electronic packaging, energy storage capacitors, electromagnetic shielding, and biomedical sensors and actuators. The conventional mixing rules-based methods such as the Kerner model, Maxwell–Garnett (MG) model, Maxwell–Wagner-Sillars (MWS) model, Bruggeman model solely rely on the volume fraction (vol%), which is often inadequate to predict the frequency dependency of the effective permittivity of the PNCs, they also do not account for the sizes of the inclusions. A computational model was developed to estimate the dielectric permittivity and the dielectric loss of PNCs using COMSOL multi-physics. Experimental data from previously published references confirmed the validity of the finite element analysis (FEA) based model. Next, the COMSOL model was utilized to quantitatively analyze the complex dielectric constant as a function of the applied frequency, the dielectric properties of the inclusion and the polymer matrix, and the volume fraction of the inclusion. The study was conducted with a polymer matrix of polymethylmethacrylate (PMMA) and five nanoparticles including semiconductor material silicon (Si), inorganic zinc-sulfide (ZnS), metal gold (Au), metal-oxide titanium oxide (TiO2), and dielectric fillers BaTiO3 (BT). The results show that the frequency-dependent dielectric relaxation behavior, the MWS interfacial polarization, significantly influences the dielectric properties. A 10 vol% inclusion of Si, ZnS, and BT resulted in MWS frequency of 103, 1584, 105 Hz. The charge barrier is most substantial in low frequency as it restricts electric field propagation around the inclusion. However, at a significantly high frequency, the charge barrier breaks, lowering the dielectric constant of the composite. In addition to that, a unique behavior was observed in high conductive fillers PNCs (e.g., Au) as the permittivity showed a fillers size dependence even with the same volume fraction. At frequency nearing 105 Hz, the Au-PMMA composite showed a higher permittivity with smaller nanoparticles inclusion. This is a significant finding contrary to the existing understandings based on the conventional mixing rules (e.g., MWS, MG, Bruggeman, Kerner model), which does not account for the size of inclusions. The present study has important implications for device engineers and materials manufacturers to choose appropriate materials with desired properties for optoelectronic packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets are available from the corresponding author on reasonable request.

References

  1. Masoud, E.M.: Montmorillonite incorporated polymethylmethacrylate matrix containing lithium trifluoromethanesulphonate (LTF) salt: thermally stable polymer nanocomposite electrolyte for lithium-ion batteries application. Ionics. 25, 2645–2656 (2019)

    Article  CAS  Google Scholar 

  2. Masoud, E.M., El-Bellihi, A.A., Bayoumy, W.A., et al.: Polymer composite containing nano magnesium oxide filler and lithiumtriflate salt: An efficient polymer electrolyte for lithium ion batteries application. J. Mol. Liq. 260, 237–244 (2018)

    Article  CAS  Google Scholar 

  3. Masoud, E.M., Hassan, M.E., Wahdaan, S.E., et al.: Gel P (VdF/HFP) / PVAc / lithium hexafluorophosphate composite electrolyte containing nano ZnO filler for lithium ion batteries application: Effect of nano filler concentration on structure thermal stability and transport properties. Polym. Test. 56, 277–286 (2016)

    Article  CAS  Google Scholar 

  4. Masoud, E.M.: Nano lithium aluminate filler incorporating gel lithium triflate polymer composite: Preparation, characterization and application as an electrolyte in lithium ion batteries. Polym. Test. 56, 65–73 (2016)

    Article  CAS  Google Scholar 

  5. Chao, C.-G., Kumar, M.P., Riaz, N., et al.: Polyisobutylene Oligomers as Tools for Iron Oxide Nanoparticle Solubilization. Macromolecules. 50, 1494–1502 (2017)

    Article  CAS  Google Scholar 

  6. Galland, S., Andersson, R.L., Ström, V., et al.: Strong and Moldable Cellulose Magnets with High Ferrite Nanoparticle Content. ACS. Appl. Mater. Interfaces. 6, 20524–20534 (2014)

    Article  CAS  Google Scholar 

  7. Zhou, L., He, B., Huang, J.: One-Step Synthesis of Robust Amine- and Vinyl-Capped Magnetic Iron Oxide Nanoparticles for Polymer Grafting Dye Adsorption and Catalysis. ACS. Appl. Mater. Interfaces. 5, 8678–8685 (2013)

    Article  CAS  Google Scholar 

  8. He, Q., Yuan, T., Zhang, X., et al.: Magnetically Soft and Hard Polypropylene/Cobalt Nanocomposites: Role of Maleic Anhydride Grafted Polypropylene. Macromolecules. 46, 2357–2368 (2013)

    Article  CAS  Google Scholar 

  9. Zhang, X., He, Q., Gu, H., et al.: Flame-Retardant Electrical Conductive Nanopolymers Based on Bisphenol F Epoxy Resin Reinforced with Nano Polyanilines. ACS. Appl. Mater. Interfaces. 5, 898–910 (2013)

    Article  CAS  Google Scholar 

  10. Islam, M.D., Liu, S., Boyd, D.A., et al.: Enhanced mid-wavelength infrared refractive index of organically modified chalcogenide (ORMOCHALC) polymer nanocomposites with thermomechanical stability. Opt. Mater. 108, 110197 (2020)

  11. Kim, H., Miura, Y., MacOsko, C.W.: Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22, 3441–3450 (2010)

    Article  CAS  Google Scholar 

  12. Yao, J., Liu, Z., Liu, Y., et al.: Optical Negative Refraction in Bulk Metamaterials of Nanowires. Science. 321, 930 (2008)

    Article  CAS  Google Scholar 

  13. Zhu, J., Wei, S., Yadav, A., et al.: Rheological behaviors and electrical conductivity of epoxy resin nanocomposites suspended with in-situ stabilized carbon nanofibers. Polymer 51, 2643–2651 (2010)

    Article  CAS  Google Scholar 

  14. Mavinakuli, P., Wei, S., Wang, Q., et al.: Polypyrrole/silicon carbide nanocomposites with tunable electrical conductivity. J. Phys. Chem. C. 114, 3874–3882 (2010)

    Article  CAS  Google Scholar 

  15. Zhu, J., Wei, S., Ryu, J., et al.: In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J. Mater. Chem. 20, 4937 (2010)

    Article  CAS  Google Scholar 

  16. Guo, Z., Park, S., Hahn, H.T., et al.: Giant magnetoresistance behavior of an iron/carbonized polyurethane nanocomposite. Appl. Phys. Lett. 90 (2007). https://doi.org/10.1063/1.2435897. (Epub ahead of print)

  17. Wang, L., Qiu, J.J., McMahon, W.J., et al.: Nano-oxide-layer insertion and specular effects in spin valves: Experiment and theory. Phys. Rev. B. 69, 214402 (2004)

  18. Zhu, J., Wei, S., Alexander, M.J., et al.: Enhanced electrical switching and electrochromic properties of poly(p-phenylenebenzobisthiazole) thin films embedded with nano-WO3. Adv. Funct. Mater. 20, 3076–3084 (2010)

    Article  CAS  Google Scholar 

  19. Zhu, J., Wei, S., Chen, X., et al.: Electrospun polyimide nanocomposite fibers reinforced with core-shell fe-feo nanoparticles. J. Phys. Chem. C. 114, 8844–8850 (2010)

    Article  CAS  Google Scholar 

  20. Podsiadlo, P., Kaushik, A.K., Arruda, E.M., et al.: Ultrastrong and Stiff Layered Polymer Nanocomposites. Science. 318, 80–83 (2007)

    Article  CAS  Google Scholar 

  21. Podsiadlo, P., Liu, Z., Paterson, D., et al.: Fusion of Seashell Nacre and Marine Bioadhesive Analogs: High-Strength Nanocomposite by Layer-by-Layer Assembly of Clay and L-3,4-Dihydroxyphenylalanine Polymer. Adv. Mater. 19, 949–955 (2007)

    Article  CAS  Google Scholar 

  22. Chen, X., Wei, S., Gunesoglu, C., et al.: Electrospun Magnetic Fibrillar Polystyrene Nanocomposites Reinforced with Nickel Nanoparticles. Macromol. Chem. Phys. 211, 1775–1783 (2010)

    Article  CAS  Google Scholar 

  23. Franzoso, F., Vaca-Garcia, C., Rouilly, A., et al.: Extruded versus solvent cast blends of poly(vinyl alcohol-co-ethylene) and biopolymers isolated from municipal biowaste. J. Appl. Polym. Sci. 133, 43009 (2016)

    Article  CAS  Google Scholar 

  24. Cataldi, P., Bayer, I.S., Nanni, G., et al.: Effect of graphene nano-platelet morphology on the elastic modulus of soft and hard biopolymers. Carbon. N. Y. 109, 331–339 (2016)

    Article  CAS  Google Scholar 

  25. Li, Y., Jia, S., Du, S., et al.: Improved properties of recycled polypropylene by introducing the long chain branched structure through reactive extrusion. Waste. Manag. 76, 172–179 (2018)

    Article  CAS  Google Scholar 

  26. Miu, E.V., Fox, A.J., Jubb, S.H., et al.: Morphology and toughness enhancements in recycled high-density polyethylene (rHDPE) via solid-state shear pulverization (SSSP) and solid-state/melt extrusion (SSME). J. Appl. Polym. Sci. 133, 43070 (2016)

    Article  CAS  Google Scholar 

  27. Masoud, E.M.: Citrated porous gel copolymer electrolyte composite for lithium ion batteries application: An investigation of ionic conduction in an optimized crystalline and porous structure. J. Alloys. Compd. 651, 157–163 (2015)

    Article  CAS  Google Scholar 

  28. Masoud, E.M., El-Bellihi, A.A., Bayoumy, W.A., et al.: Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO-LiClO4 composite. Mater. Res. Bull. 48, 1148–1154 (2013)

    Article  CAS  Google Scholar 

  29. Masoud, E.M., El-Bellihi, A.A., Bayoumy, W.A., et al.: Organic-inorganic composite polymer electrolyte based on PEO-LiClO 4 and nano-Al2O3 filler for lithium polymer batteries: Dielectric and transport properties. J. Alloys. Compd. 575, 223–228 (2013)

    Article  CAS  Google Scholar 

  30. El Bellihi, A.A., Bayoumy, W.A., Masoud, E.M., et al.: Preparation, characterizations and conductivity of composite polymer electrolytes based on PEO-LiClO 4 and nano ZnO filler. Bull. Korean. Chem. Soc. 33, 2949–2954 (2012)

    Article  CAS  Google Scholar 

  31. Venugopal, V.C., Lakhtakia, A., Messier, R., et al.: Low-permittivity nanocomposite materials using sculptured thin film technology. J. Vac. Sci. Technol. B. Microelectron. Nanom. Struct. Process. Meas. Phenom. 18, 32 (2000)

    Article  CAS  Google Scholar 

  32. Mikrajuddin, Shi FG, Okuyama K, et al. Conduction development in electrically conductive adhesives with a bimodal size distributed conducting and inert particles: Effect of polydispersity. In: 2000 Proceedings. 50th Electronic Components and Technology Conference, pp. 609–614. IEEE (2000)

  33. Mikrajuddin, Shi, F.G., Nieh, T.G., et al.: Electrical conduction in solid polymer electrolytes: temperature dependence mechanism. Microelectronics. J. 31, 261–265 (2000)

  34. Mikrajuddin, M., Okuyama, K., Shi, F.G., et al.: Dielectric constant of polymer composites: A novel thermal-electrical approach. In: Conference Record of the 2000 IEEE International Symposium on Electrical Insulation, pp. 180–183. IEEE (2000)

  35. Vo, H.T., Shi, F.G.: Towards model-based engineering of optoelectronic packaging materials: Dielectric constant modeling. Microelectronics. J. 33, 409–415 (2002)

    Article  CAS  Google Scholar 

  36. Venugopal, V.C., Lakhtakia, A., Messier, R., et al.: Low-permittivity nanocomposite materials using sculptured thin film technology. J. Vac. Sci. Technol. B. Microelectron. Nanom. Struct. Process. .Meas Phenom. 18, 32 (2000)

  37. Walpita, L.M., Ahern, M.R.: Temperature compensated high-dielectric-constant thermoplastic microwave materials. IEE. Proc. Microwaves. Antennas. Propag. 147, 285–288 (2000)

    Article  Google Scholar 

  38. Jackson, M., Stern, C.: Modeling the Complex Permittivity of Thermoplastic Composite Materials. J. Microw. Power. Electromagn. Energy. 27, 103–111 (2016). https://doi.org/10.1080/08327823.1992.11688178

    Article  Google Scholar 

  39. Rogti, F., Ferhat, M.: Maxwell-Wagner polarization and interfacial charge at the multi-layers of thermoplastic polymers. J. Electrostat. 72, 91–97 (2014)

    Article  CAS  Google Scholar 

  40. Horiuchi, N., Nakamura, M., Nagai, A., et al.: Proton conduction related electrical dipole and space charge polarization in hydroxyapatite. J. Appl. Phys. 112, 074901 (2012)

  41. Kao, K.C.: Dielectric Phenomena in Solids. Elsevier Inc., Amsterdam (2004)

    Google Scholar 

  42. Lu, X., Zhang, A., Dubrunfaut, O., et al. Numerical modeling and experimental characterization of the AC conductivity and dielectric properties of CNT/polymer nanocomposites. Compos. Sci. Technol. 194, 108150 (2020)

  43. Zhong, S.L., Dang, Z.M., Zha, J.W.: Prediction on effective permittivity of 0–3 connectivity particle/polymer composites at low concentration with finite element method. IEEE. Trans. Dielectr. Electr. Insul. 25, 2122–2127 (2018)

    Article  CAS  Google Scholar 

  44. Wang, Z., Keith-Nelson, J., Hillborg, H., et al.: Dielectric constant and breakdown strength of polymer composites with high aspect ratio fillers studied by finite element models. Compos. Sci. Technol. 76, 29–36 (2013)

    Article  CAS  Google Scholar 

  45. Simoes, R., Silva, J., Vaia, R., et al.: Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix:dielectric properties simulations and experiments. Nanotechnology. 20, 035703 (2008)

  46. Gupta, A., Hartner, S., Wiggers, H.: Optical and electrical properties of silicon nanoparticles. In: INEC 2010 - 2010 3rd Int Nanoelectron Conf Proc, pp. 616–617. IEEE (2010)

  47. El-Barry, A.M.A., Atyia, H.E.: Dielectric relaxation and AC conductivity of XS (X=Cd, Zn) compounds. Phys. B. Condens. Matter. 368, 1–7 (2005)

    Article  CAS  Google Scholar 

  48. Orfanidis, S.J.: Electromagnetic Waves and Antennas. Rutgers University, Piscataway, NJ. http://eceweb1.rutgers.edu/~orfanidi/ewa/ (2016). Accessed 20 July 2021

  49. AZO Materials. Properties: Titanium Dioxide - Titania (TiO2). https://www.azom.com/properties.aspx?ArticleID=1179 (2002) Accessed 20 July 2021

  50. Hao, Y., Wang, X., Bi, K., et al.: Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films. Nano Energy 31, 49–56 (2017)

    Article  CAS  Google Scholar 

  51. Shameer, A.B., Nandaprakash, M.B., Namratha, K., et al. Structure and Electrical Conductivity of Irradiated BaTiO3 Nanoparticles. Phys. Status. Solidi. Basic. Res. 255 (2018). https://doi.org/10.1002/PSSB.201700581. (Epub ahead of print)

  52. Norris, A.N., Sheng, P., Callegari, A.J.: Effective-medium theories for two-phase dielectric media. J. Appl. Phys. 57, 1990 (1998)

    Article  Google Scholar 

  53. Cheng, Y., Chen, X., Wu, K.: Modeling and simulation for effective permittivity of two-phase disordered composites. J. Appl. Phys. 103, 34111 (2008)

    Article  CAS  Google Scholar 

  54. Chen, Z., Li, H., Xie, G., et al.: Core–shell structured Ag@C nanocables for flexible ferroelectric polymer nanodielectric materials with low percolation threshold and excellent dielectric properties. RSC. Adv. 8, 1–9 (2017)

    Article  Google Scholar 

  55. Liu, G., Chen, Y., Gong, M., et al.: Enhanced dielectric performance of PDMS-based three-phase percolative nanocomposite films incorporating a high dielectric constant ceramic and conductive multi-walled carbon nanotubes. J. Mater. Chem. C. 6, 10829–10837 (2018)

    Article  CAS  Google Scholar 

  56. Nguyen, B.H., Zhuang, X., Rabczuk, T.: Numerical model for the characterization of Maxwell-Wagner relaxation in piezoelectric and flexoelectric composite material. Comput. Struct. 208, 75–91 (2018)

    Article  Google Scholar 

  57. Samet, M., Levchenko, V., Boiteux, G., et al.: Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws. J. Chem. Phys. 142, 194703 (2015)

  58. Da Silva, A.B., Arjmand, M., Sundararaj, U., et al.: Novel composites of copper nanowire/PVDF with superior dielectric properties. Polymer 55, 226–234 (2014)

    Article  CAS  Google Scholar 

  59. Song, S., Zheng, Z., Bi, Y., et al.: Improving the electroactive phase, thermal and dielectric properties of PVDF/graphene oxide composites by using methyl methacrylate-co-glycidyl methacrylate copolymers as compatibilizer. J. Mater. Sci. 54(5), 3832–3846 (2018)

    Article  CAS  Google Scholar 

  60. Wang, Y., He, P., Li, F.: Preparation and dielectric property of MWCNT/CCTO/PVDF composite film. Mater. Res. Express. 5, 066304 (2018)

  61. Roy, A.S., Gupta, S., Sindhu, S., et al.: Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos. Part. B. Eng. 47, 314–319 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

J. Ryu was partly supported by the new faculty start-up fund at NCSU and was supported in part by the Air Force Research Laboratory RYDH Sensors Directorate, through the Air Force Office of Scientific Research Summer Faculty Fellowship Program®, Contract Numbers FA8750-15–3-6003 and FA9550-15–0001. The project was also partially supported by National Science Foundation under grant no. 2031558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Eun Ryu.

Ethics declarations

Competing Interests

Authors are required to disclose financial or non-financial interests that are directly or indirectly related to the work submitted for publication. Please refer to “Competing Interests and Funding” below for more information on how to complete this section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.D., Liu, S., Choi, D. et al. Physics-based Computational Method Predicting the Dielectric Properties of Polymer Nanocomposites. Appl Compos Mater 29, 1579–1595 (2022). https://doi.org/10.1007/s10443-022-10026-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10026-3

Keywords

Navigation