Skip to main content

Advertisement

Log in

Numerical Simulation and Multi-objective Optimization for Curing Process of Thermosetting Prepreg

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In order to improve the curing quality of thermosetting prepreg, reduce the unevenness of the temperature field and the curing degree field during curing process, and improve the curing efficiency, a multi-objective optimization method is used to optimize the cure cycle. In this paper, the coupling of heat conduction, cure kinetics, are used to analyze curing process of thermosetting prepreg. Firstly, a quarter finite element analysis model of the 4-layer unidirectional laminate is established in ABAQUS, the change of the cure cycle is considered, the temperature field and the curing degree field are analyzed. After comparison, the results of numerical simulation are basically consistent with the data in the reference paper. Secondly, surrogate model was established by Genetic Algorithm- Back Propagation (GA-BP) neural network, and the target value is predicted accurately under the given process parameters. The GA-BP surrogate model is used as the fitness function, and the Non-dominated sorting genetic algorithm II (NSGA-II) algorithm is used to select the maximum value of temperature overshoot and the curing time as the objectives to perform multi-objective optimization of process parameters. Finally, the research results show that the optimization method can reduce the maximum value of temperature overshoot, improve the uniformity of curing, and reduce curing time. The optimization strategy of “finite element numerical simulation-GA-BP neural network-NSGA-II optimization algorithm” is proposed, which has positive significance for the optimization of composites molding process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  1. Meng, J.X., Wang, Y., Yang, H.Y., Wang, P.D., Lei, Q., Shi, D.F., Lei, H.S., Fang, D.N.: Mechanical properties and internal microdefects evolution of carbon fiber reinforced polymer composites: Cryogenic temperature and thermocycling effects. Compos. Sci. Technol. 191, 108083 (2020)

  2. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P., Akhatov, I.: Pultruded materials and structures: A review. J. Compos. Mater. 54(26), 4081–4117 (2020)

    Article  Google Scholar 

  3. Rubino, F., Nisticò, A., Tucci, F., Carlone, P.: Marine Application of Fiber Reinforced Composites: A Review. J. Mar. Sci. Eng. 8(1), 26 (2020)

    Article  Google Scholar 

  4. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P., Akhatov, I.: Modeling Spring-In of L-Shaped Structural Profiles Pultruded at Different Pulling Speeds. Polymers 13(16), 2748 (2021)

    Article  CAS  Google Scholar 

  5. Tucci, F., Bezerra, R., Rubino, F., Carlone, P.: Multiphase flow simulation in injection pultrusion with variable properties. Mater. Manuf. Process. 35(2), 152–162 (2020)

    Article  CAS  Google Scholar 

  6. Aleksendric, D., Bellini, C., Carlone, P., Cirovic, V., Rubino, F., Sorrentino, L.: Neural-fuzzy optimization of thick composites curing process. Mater. Manuf. Process. 34(3), 262–273 (2019)

    Article  CAS  Google Scholar 

  7. Carlone, P., Rubino, F., Paradiso, V., Tucci, F.: Multi-scale modeling and online monitoring of resin flow through dual-scale textiles in liquid composite molding processes. Int. J. Adv. Manuf. Technol. 96(5–8), 2215–2230 (2018)

    Article  Google Scholar 

  8. Rubino, F., Esperto, V., Tucci, F., Carlone, P.: Flow enhancement in liquid composite molding processes by online microwave resin preheating. Polym. Eng. Sci. 60(10), 2377–2389 (2020)

    Article  CAS  Google Scholar 

  9. Dong, A., Zhao, Y., Zhao, X., Yu, Q.: Cure Cycle Optimization of Rapidly Cured Out-Of-Autoclave Composites. Materials. 11(3), 421 (2018)

    Article  CAS  Google Scholar 

  10. Naresh, K., Khan, K.A., Cantwell, W.J., Umer, R.: Viscoelastic and cyclic compaction response of prepregs tested under isothermal temperatures and various compaction speeds. Polym. Compos. 42(12), 6928–6940 (2021)

    Article  CAS  Google Scholar 

  11. Kim, J.Y., Hwang, Y.T., Baek, J.H., Song, W.Y., Kim, H.S.: Study on inter-ply friction between woven and unidirectional prepregs and its effect on the composite forming process. Compos. Struct. 267, 113888 (2021)

  12. Hassan, M.H.: A mini review on manufacturing defects and performance assessments of complex shape prepreg-based composites. Int. J. Adv. Manuf. Technol. 115(11–12), 3393–3408 (2021)

    Article  Google Scholar 

  13. Sommer, D.E., Kravchenko, S.G., Pipes, R.B.: A numerical study of the meso-structure variability in the compaction process of prepreg platelet molded composites. Compos. Pt. A. Appl. Sci. Manuf. 138, 106010 (2020)

  14. Hallander, P., Grankall, T., Eriksson, M., Petersson, M., Akermo, M.: Using tailored temperature variations to obtain flawless forming of multi-stacked unidirectional prepreg. J. Compos. Mater. 54(26), 3999–4009 (2020)

    Article  Google Scholar 

  15. Zhang, K., Gu, Y., Li, M., Wang, S., Zhang, Z.: Effects of curing time and de-molding temperature on the deformation of glass fiber/epoxy resin prepreg laminates fabricated by rapid hot press. Polym. Polym. Compos. 27(6), 301–313 (2019)

    CAS  Google Scholar 

  16. Zhang, J.T., Shang, Y.D., Zhang, M., Liu, L.S., Zhai, P.C., Li, S.X.: Cure-Dependent Viscoelastic Analysis on the Residual Stresses and Distortion Created in Composite Corner During Curing. In: 2nd Annual International Conference on Advanced Material Engineering (AME), Wuhan, China, 15–17 Apr 2016

  17. Wang, X.X., Wang, Q.L., Gao, L.L., Jia, Y.X.: Effect of Heat Treatment on Curing Uniformity of Fiber Composite Laminates. Polym. Polym. Compos. 25, 29–33 (2017)

    CAS  Google Scholar 

  18. Wang, X.X., Wang, Q.L., Gao, L.L., Jia, Y.X.: Effects of key thermophysical properties on the curing uniformity of carbon fiber reinforced resin composites. e-Polymers. 18, 19–26 (2018)

  19. Nawab, Y., Sonnenfeld, C., Saouab, A., Agogue, R., Beauchene, P.: Characterisation and modelling of thermal expansion coefficient of woven carbon/epoxy composite and its application to the determination of spring-in. J. Compos. Mater. 51, 1527–1538 (2017)

    Article  CAS  Google Scholar 

  20. Anandan, S., Dhaliwal, G.S., Huo, Z., Chandrashekhara, K., Apetre, N., Iyyer, N.: Curing of Thick Thermoset Composite Laminates: Multiphysics Modeling and Experiments. Appl. Compos. Mater. 25, 1155–1168 (2018)

    Article  CAS  Google Scholar 

  21. Wang, Q., Wang, L.Y., Zhu, W.D., Xu, Q., Ke, Y.L.: Numerical investigation of the effect of thermal gradients on curing performance of autoclaved laminates. J. Compos. Mater. 54, 127–138 (2020)

    Article  Google Scholar 

  22. Lian, J.Y., Xu, Z.B., Ruan, X.D.: Analysis and control of cured deformation of fiber-reinforced thermosetting composites: a review. J. Zhejiang. Univ. Sci A. 20, 311–333 (2019)

    Article  Google Scholar 

  23. Struzziero, G., Teuwen, J.J.E., Skordos, A.A.: Numerical optimisation of thermoset composites manufacturing processes: A review. Compos. Pt. A. Appl. Sci. Manuf. 124, 105499 (2019)

  24. Jahromi, P.E., Shojaei, A., Pishvaie, S.M.R.: Prediction and optimization of cure cycle of thick fiber-reinforced composite parts using dynamic artificial neural networks. J. Reinf. Plast. Compos. 31, 1201–1215 (2012)

    Article  CAS  Google Scholar 

  25. Matsuzaki, R., Yokoyama, R., Kobara, T., Tachikawa, T.: Multi-objective curing optimization of carbon fiber composite materials using data assimilation and localized heating. Compos. Pt. A. Appl. Sci. Manuf. 119, 61–72 (2019)

    Article  CAS  Google Scholar 

  26. Wang, Z.Z., Sobey, A.: A comparative review between Genetic Algorithm use in composite optimisation and the state-of-the-art in evolutionary computation. Compos. Struct. 233, 111739 (2020)

  27. Struzziero, G., Skordos, A.: Multi-objective optimization of Resin Infusion. Adv. Manu-Polym. Comp. Sci. 5(1), 17–28 (2019)

    CAS  Google Scholar 

  28. Hou, J., You, B., Xu, J., Hu, Q.: Numerical simulation for expansion of preform and optimization of preform in thermoset composites. Adv. Mech. Eng. 13(5), 16878140211017002 (2021)

    Article  CAS  Google Scholar 

  29. Shevtsov, S., Zhilyaev, I.V., Tarasov, I., Wu, J.K., Snezhina, N.G.: Model-based multi-objective optimization of cure process control for a large CFRP panel. Eng. Comput. 35(2), 1085–1097 (2018)

    Article  Google Scholar 

  30. Shevtsov, S., Zhaivoronskaia, K., Tarasov, I.: Model Based Control Optimization for Curing the Shell-like Composite Structures in Autoclave Processing. In: 1st Annual International Conference on Structural Engineering and Mechanics (2016)

  31. Wang, Q., Wang, L., Zhu, W., Xu, Q., Ke, Y.: Design optimization of molds for autoclave process of composite manufacturing. J. Reinf. Plast. Compos. 36(21), 1564–1576 (2017)

    Article  CAS  Google Scholar 

  32. Zhang, W., Xu, Y., Hui, X., Zhangm, W.: A multi-dwell temperature profile design for the cure of thick CFRP composite laminates. Int. J. Adv. Manuf. Technol. 117(3–4), 1133–1146 (2021)

    Article  Google Scholar 

  33. Dolkun, D., Zhu, W.D., Xu, Q., Ke, Y.L.: Optimization of cure profile for thick composite parts based on finite element analysis and genetic algorithm. J. Compos. Mater. 52, 3885–3894 (2018)

    Article  Google Scholar 

  34. Vafayan, M., Ghoreishy, M.H.R., Abedini, H., Beheshty, M.H.: Development of an optimized thermal cure cycle for a complex-shape composite part using a coupled finite element/genetic algorithm technique. Iran. Polym. J. 24, 459–469 (2015)

    Article  Google Scholar 

  35. Califano, A., Chandarana, N., Grassia, L., D’Amore, A., Soutis, C.: Damage Detection in Composites By Artificial Neural Networks Trained By Usingin SituDistributed Strains. Appl. Compos. Mater. 27(5), 657–671 (2020)

    Article  CAS  Google Scholar 

  36. Luo, L., Zhang, B., Zhang, G., Li, X., Fang, X., Li, W., Zhang, Z.: Rapid prediction and inverse design of distortion behaviors of composite materials using artificial neural networks. Polym. Adv. Technol. 32(3), 1049–1060 (2021)

    Article  CAS  Google Scholar 

  37. Luo, L., Zhang, B.M., Zhang, G.W., Xu, Y.: Rapid prediction of cured shape types of composite laminates using a FEM-ANN method. Compos. Struct. 238, 111980 (2020)

  38. Yang, C., Kim, Y., Ryu, S., Gu, G.X.: Using convolutional neural networks to predict composite properties beyond the elastic limit. MRS. Commun. 9(2), 609–617 (2019)

    Article  CAS  Google Scholar 

  39. Aleksendric, D., Carlone, P., Cirovic, V.: Optimization of the Temperature-Time Curve for the Curing Process of Thermoset Matrix Composites. Appl. Compos. Mater. 23, 1047–1063 (2016)

    Article  Google Scholar 

  40. Yuan, Z.Y., Tong, X.X., Yang, G.G., Yang, Z.C., Song, D.L., Li, S.J., Li, Y.: Curing Cycle Optimization for Thick Composite Laminates Using the Multi-Physics Coupling Model. Appl. Compos. Mater. 27, 839–860 (2020)

    Article  Google Scholar 

  41. Yuan, Z.Y., Kong, L.F., Gao, D.J., Tong, X.X., Feng, Y., Yang, G.G.: Multi-objective approach to optimize cure process for thick composite based on multi-field coupled model with RBF surrogate model. Compos. Commun. 24, 100671 (2021)

  42. Wang, Q., Yang, X.F., Zhao, H.X., Zhang, X.W., Cao, G.L., Ren, M.F.: Microscopic residual stresses analysis and multi-objective optimization for 3d woven composites. Compos. Pt. A. Appl. Sci. Manuf. 144, 106310 (2021)

  43. Seretis, G., Kouzilos, G., Manolakos, D., Provatidis, C.: Multi-Objective Curing Cycle Optimization for Glass Fabric/Epoxy Composites Using Poisson Regression and Genetic Algorithm. Mater. Res. Ibero. Am. J. Mater. 21, e20140815 (2018)

  44. Tifkitsis, K.I., Mesogitis, T.S., Struzziero, G., Skordos, A.A.: Stochastic multi-objective optimisation of the cure process of thick laminates. Compos. Pt. A. Appl. Sci. Manuf. 112, 383–394 (2018)

    Article  CAS  Google Scholar 

  45. Bogetti, T.A., Gillespie, J.W., Jr.: Two-Dimensional Cure Simulation of Thick Thermosetting Composites. J. Compos. Mater. 25, 239–273 (1991)

    Article  CAS  Google Scholar 

  46. Bogetti, T.A., Gillespie, J.W.: Process-Induced Stress and Deformation in Thick-Section Thermoset Composite Laminates. J. Compos. Mater. 26, 626–660 (1992)

    Article  CAS  Google Scholar 

  47. Kim, Y.K., White, S.R.: Viscoelastic analysis of processing-induced residual stresses in thick composite laminates. Mech. Adv. Mater. Struct. 4, 361–387 (1997)

    Article  CAS  Google Scholar 

  48. Loos, A.C., Springer, G.S.: Curing of Epoxy Matrix Composites. J. Compos. Mater. 17, 135–169 (1983)

    Article  CAS  Google Scholar 

  49. Lee, W.I., Loos, A.C., Springer, G.S.: Heat of reaction degree of cure and viscosity of hercules 3501–6 resin. J. Compos. Mater. 16, 510–520 (1982)

    Article  CAS  Google Scholar 

  50. White, S.R., Kim, Y.K.: Process-induced residual stress analysis of AS4/3501-6 composite material. Mech. Compos. Mater. 5, 153–186 (1998)

    CAS  Google Scholar 

  51. Shah, P.H., Halls, V.A., Zheng, J.Q., Batra, R.C.: Optimal cure cycle parameters for minimizing residual stresses in fiber-reinforced polymer composite laminates. J. Compos. Mater. 52, 773–792 (2018)

    Article  CAS  Google Scholar 

  52. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE. Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  53. Luca, E., Luca, S., Francesco, P., Costanzeto, B.: Effect of curing overheating on interlaminar shear strength and its modelling in thick FRP laminates. Int. J. Adv. Manuf. Technol. 87, 2213–2220 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Heilongjiang Province Applied Technology Research and Development Plan, grant number GA20A401.

Funding

This research was funded by Heilongjiang Province Applied Technology Research and Development Plan, grant number GA20A401.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.H.; methodology, J.H.; software, J.H.; validation, J.H., T.F., and T.W.; formal analysis, J.H.; investigation, J.H.; resources, J.H.; data curation, J.H.; writing–original draft preparation, J.H.; writing–review and editing, B.Y. and J.X.; visualization, J.H.; supervision, B.Y. and J.X.; project administration, B.Y. and J.X.; funding acquisition, B.Y. and J.X. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Bo You.

Ethics declarations

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Conflicting Interests

The author(s) declared no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., You, B., Xu, J. et al. Numerical Simulation and Multi-objective Optimization for Curing Process of Thermosetting Prepreg. Appl Compos Mater 29, 1409–1429 (2022). https://doi.org/10.1007/s10443-022-10022-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10022-7

Keywords

Navigation