Skip to main content

Advertisement

Log in

On the Effect of Dielectric Breakdown in UD CFRPs Subjected to Lightning Strike Using an Experimentally Validated Model

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

To meet worldwide increases in energy demands Wind Turbine (WT) manufacturers are producing turbines with longer blades to generate more electrical energy. To lightweight these blades, Carbon Fibre Reinforced Polymers (CFRP) have been introduced in load carrying structures such as the WT blade sparcaps. The introduction of CFRPs presents new challenges in integrating protection from lightning strikes. The semi-conductive nature of CFRPs adds an additional electrical path to ground, and the anisotropic nature of the material properties, in particular the thermal and electrical conductivities, creates large amounts of resistive heating. The aim of this paper is to develop and validate a modelling approach to predict lightning damage in unidirectional (UD) CFRP materials. The proposed model uses an approximate approach that includes the electric field dependency to simulate dielectric breakdown. The model predictions are validated against experimental data and observations obtained from simulated direct lightning strike tests conducted on UD CFRP laminates. A comparison between the experimental results and the proposed model shows good ability to accurately predict the shape, volume, and depth of the inflicted damage. Furthermore, the proposed model is benchmarked against conventional damage models reported in literature, and a clear improvement of the predictive capability is demonstrated, especially with respect to the predicted depth of damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Gagné, M., Therriault, D.: Lightning strike protection of composites. Prog. Aerosp. Sci. 64, 1–16 (2014). https://doi.org/10.1016/j.paerosci.2013.07.002

    Article  Google Scholar 

  2. Feraboli, P., Miller, M.: Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike. Compos. Part. A. Appl. Sci. Manuf. 40(6–7), 954–967 (2009). https://doi.org/10.1016/j.compositesa.2009.04.025

    Article  CAS  Google Scholar 

  3. Kawakami, H., Feraboli, P.: Lightning strike damage resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites. Compos. Part. A. Appl. Sci. Manuf. 42(9), 1247–1262 (2011). https://doi.org/10.1016/j.compositesa.2011.05.007

    Article  CAS  Google Scholar 

  4. Harrell, T.M., Thomsen, O.T., Dulieu-Barton, J.M., Madsen, S.F.: Damage in CFRP composites subjected to simulated lightning strikes - Assessment of thermal and mechanical responses. Compos. Part. B. Eng. 176(1), 107298 (2019). https://doi.org/10.1016/j.compositesb.2019.107298

    Article  CAS  Google Scholar 

  5. Yin, J.J., Chang, F., Li, S.L., Yao, X.L., Sun, J.R., Xiao, Y.: Lightning Strike Ablation Damage Influence Factors Analysis of Carbon Fiber/Epoxy Composite Based on Coupled Electrical-Thermal Simulation. Appl. Compos. Mater. 1, 1–18 (2016). https://doi.org/10.1007/s10443-016-9577-1

    Article  CAS  Google Scholar 

  6. Ogasawara, T., Hirano, Y., Yoshimura, A.: Coupled thermal-electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current. Compos. Part. A. Appl. Sci. Manuf. 41(8), 973–981 (2010). https://doi.org/10.1016/j.compositesa.2010.04.001

    Article  CAS  Google Scholar 

  7. Han, J.H., et al.: The combination of carbon nanotube buckypaper and insulating adhesive for lightning strike protection of the carbon fiber/epoxy laminates. Carbon. N. Y. 94, 101–113 (2015). https://doi.org/10.1016/j.carbon.2015.06.026

    Article  CAS  Google Scholar 

  8. Abdelal, G., Murphy, A.: Nonlinear numerical modelling of lightning strike effect on composite panels with temperature dependent material properties. Compos. Struct. 109(1), 268–278 (2014). https://doi.org/10.1016/j.compstruct.2013.11.007

    Article  Google Scholar 

  9. Chemartin, L., et al.: Direct Effects of Lightning on Aircraft Structure : Analysis of the Thermal Electrical and Mechanical Constraints. J. Aerosp. Lab. 5, 1–15 (2012)

    Google Scholar 

  10. Harrell, T.M.: Characterisation of lightning strike induced damage in CFRP laminates and components for wind turbine blades. University of Southampton, England (2020). https://eprints.soton.ac.uk/447847/ (PhD thesis)

    Google Scholar 

  11. Muñoz, R., Delgado, S., González, C., López-Romano, B., Wang, D.Y., Llorca, J.: Modeling lightning impact thermo-mechanical damage on composite materials. Appl. Compos. Mater. 21(1), 149–164 (2014). https://doi.org/10.1007/s10443-013-9377-9

    Article  Google Scholar 

  12. Karch, C., Arteiro, A., Camanho, P.P.: Modelling mechanical lightning loads in carbon fibre-reinforced polymers. Int. J. Solids Struct. 162, 217–243 (2018). https://doi.org/10.1016/j.ijsolstr.2018.12.013

    Article  CAS  Google Scholar 

  13. Haigh-Taylor, S.J.: Impulse effects during simulated lightning attachments to lightweight composite panels. In: International Aerospace and Ground Conference on Lightning and Static Electricity, Paris (2007)

  14. Wang, Y., Zhupanska, O.I.: Lightning strike thermal damage model for glass fiber reinforced polymer matrix composites and its application to wind turbine blades. Compos. Struct. 132, 1182–1191 (2015). https://doi.org/10.1016/j.compstruct.2015.07.027

    Article  Google Scholar 

  15. Zhao, Q., et al.: Review on the electrical resistance/conductivity of carbon fiber reinforced polymer. Appl. Sci. 9(11), 2390 (2019). https://doi.org/10.3390/app9112390

    Article  CAS  Google Scholar 

  16. Zhang, X., Fujiwara, S., Fujii, M.: Measurements of thermal conductivity and electrical conductivity of a single carbon fiber. Int. J. Thermophys. 21(4), 965–980 (2000). https://doi.org/10.1023/A:1006674510648

    Article  CAS  Google Scholar 

  17. Alarifi, I.M.: Investigation the conductivity of carbon fibercomposites focusing on measurement techniquesunder dynamic and static loads. J. Mater. Res. Technol. 8(5), 4863–4893 (2019). https://doi.org/10.1016/j.jmrt.2019.08.019

    Article  CAS  Google Scholar 

  18. Manju, M.B., Vignesh, S., Nikhil, K.S., Sharaj, A.P., Murthy, M.: Electrical Conductivity Studies of Glass Fiber Reinforced Polymer Composites. Mater. Today Proc. 5(1), 3229–3236 (2018). https://doi.org/10.1016/j.matpr.2018.02.027

    Article  CAS  Google Scholar 

  19. Louis, M., Joshi, S.P., Brockmann, W.: An experimental investigation of through-thickness electrical resistivity of CFRP laminates. Compos. Sci. Technol. 61(6), 911–919 (2001). https://doi.org/10.1016/S0266-3538(00)00177-9

    Article  CAS  Google Scholar 

  20. Chung, D.D.L.: Carbon Fiber Composites. Butterworth-Heine, Boston. (1994)

  21. Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors, vol. 28, no. 5–6. Springer, Berlin, Heidelberg (2010)

    Book  Google Scholar 

  22. Dissado, L.A., Fothergill, J.C.: Electrical Degradation and Breakdown in Polymers. The Institution of Engineering and Technology (IET), Michael Faraday House, Six Hills Way, Stevenage SG1 2AY, UK (1992)

    Book  Google Scholar 

  23. Harrell, T.M., Thomsen, O.T.O.T., Dulieu-Barton, J.M.J.M., Madsen, S.F.S.F., Carloni, L.: Damage prediction of CFRP materials subjected to lightning strike. Paper presented at the 21st International Conference on Composite Materials, Xi'an, China, 20-25 August, 2017

  24. Peruani, F., Solovey, G., Irurzun, I.M., Mola, E.E., Marzocca, A., Vicente, J.L.: Dielectric breakdown model for composite materials. Phys. Rev. E. Stat. Physics. Plasmas. Fluids. Relat. Interdiscip. Top. 67(6), 6 (2003). https://doi.org/10.1103/PhysRevE.67.066121

    Article  CAS  Google Scholar 

  25. International Electrotechnical Commission: IEC 61400: Wind turbines – Part 24 Lightning protection. (2010)

  26. Hsieh, J.: Computed Tomography Second Edition: Principles Design Artifacts and Recent Advances, 2nd edn. SPIE, 1000 20th Street, Bellingham, WA 98227–0010, USA (2009)

    Book  Google Scholar 

  27. Rasband, W.S.: U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/. Accessed 12 Jul 2018

  28. MATLAB 9.7.0.1190202 (R2019a). Natick, Massachusetts: The MathWorks Inc. (2018)

  29. Purcell, E.M., Morin, D.J.: Electricity and Magnetism, 3rd edn. Cambridge University Press, UK (2013)

    Book  Google Scholar 

  30. Wang, F.S., Ji, Y.Y., Yu, X.S., Chen, H., Yue, Z.F.: Ablation damage assessment of aircraft carbon fiber/epoxy composite and its protection structures suffered from lightning strike. Compos. Struct. 145, 226–241 (2016). https://doi.org/10.1016/j.compstruct.2016.03.005

    Article  Google Scholar 

  31. Shrivastava, A.: Plastic Properties and Testing. In: Shrivastava, A., Introduction to Plastics Engineering, 49-110. Elsevier (2018)

  32. Bai, Y., Vallée, T., Keller, T.: Modeling of thermal responses for FRP composites under elevated and high temperatures. Compos. Sci. Technol. 68(1), 47–56 (2008). https://doi.org/10.1016/j.compscitech.2007.05.039

    Article  CAS  Google Scholar 

  33. Dong, Q., Guo, Y., Sun, X., Jia, Y.: Coupled electrical-thermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike. Polym. 56, 385–394 (2015). https://doi.org/10.1016/j.polymer.2014.11.029

    Article  CAS  Google Scholar 

  34. Fanucci, J.P.: Thermal Response of Radiantly Heated Kevlar and Graphite/Epoxy Composites. J. Compos. Mater. 21(2), 129–139 (1987). https://doi.org/10.1177/002199838702100204

    Article  CAS  Google Scholar 

  35. Griffis, C.A., Nemes, J.A., Stonesifer, F.R., Chang, C.I.: Degradation in Strength of Laminated Composites Subjected to Intense Heating and Mechanical Loading. J. Compos. Mater. 20(3), 216–235 (1986). https://doi.org/10.1177/002199838602000301

    Article  CAS  Google Scholar 

  36. Senis, E.C., Golosnoy, I.O., Dulieu-Barton, J.M., Thomsen, O.T.: Enhancement of the electrical and thermal properties of unidirectional carbon fibre/epoxy laminates through the addition of graphene oxide. J. Mater. Sci. 54(12), 8955–8970 (2019). https://doi.org/10.1007/s10853-019-03522-8

    Article  CAS  Google Scholar 

  37. Vryonis, O., Andritsch, T., Vaughan, A.S., Lewin, P.L.: Improved Lightning Protection of Carbon Fiber Reinforced Polymer Wind Turbine Blades : Epoxy / Graphene Oxide Nanocomposites. In: 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena, 635-638 (2016). https://doi.org/10.1109/CEIDP.2016.7785623

  38. Millen, S.L.J., Murphy, A., Catalanotti, G., Abdelal, G.: Coupled Thermal-Mechanical Progressive Damage Model with Strain and Heating Rate Effects for Lightning Strike Damage Assessment. Appl. Compos. Mater. 26, 1437–1459 (2019). https://doi.org/10.1007/s10443-019-09789-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Marie Skłodowska Curie Actions, Innovative Training Networks (ITN), Call: H2020-MSCA-ITN-2014, as part of the 642771 “Lightning protection of wind turbine blades with carbon fibre composite materials” SPARCARB project. The lightning strike validation experiments were conducted in the laboratories of PolyTech A/S, Bramming, Denmark and the X-ray Computed Tomography was conducted in the UK National X-ray Computed Tomography (NXCT) facilities at the University of Southampton (µ-VIS X-ray Imaging Centre).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Harrell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrell, T.M., Madsen, S.F., Thomsen, O.T. et al. On the Effect of Dielectric Breakdown in UD CFRPs Subjected to Lightning Strike Using an Experimentally Validated Model. Appl Compos Mater 29, 1321–1348 (2022). https://doi.org/10.1007/s10443-022-10014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-022-10014-7

Keywords

Navigation