Skip to main content
Log in

Experimental Investigation of the Interlaminar Failure of Glass/Elium® Thermoplastic Composites Manufactured With Different Processing Temperatures

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The aim of this study is to evaluate the effect of the processing temperature on the interfacial failure of glass/Elium® 150 composites. The vacuum assisted resin transfer molding technique (VARTM) was used to manufacture glass/Elium® 150 composites at three different process temperatures: room temperature (24℃), 50℃ and 80℃. The interlaminar shear strength, mode I and mode II interlaminar fracture toughness of the laminates were determined by performing the short beam shear (SBS), double cantilever beam (DCB) and end notched flexure (ENF) tests, respectively. It was found that the increase in processing temperature improved the interlaminar shear strength, mode I and mode II interlaminar fracture toughness by approximately 41%, 66% and 227%, respectively. A combined compressive and shear failure mode was found in SBS tests. Fiber bridging was present for all the composite specimens in DCB tests according to the travelling recording camera images. Fracture surface images obtained by scanning electron microscopy (SEM) after the ENF tests revealed that a better fiber-matrix bonding and a ductile matrix failure were obtained for higher processing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Shuaib, N.A., Mativenga, P.T.: Energy demand in mechanical recycling of glass fibre reinforced thermoset plastic composites. J. Clean. Prod 120, 198–206 (2016)

    Article  CAS  Google Scholar 

  2. Bhudolia, S.K., Gohel, G., Joshi, S.C., et al.: Manufacturing Optimization and Experimental Investigation of Ex-situ Core-shell Particles Toughened Carbon/Elium® Thermoplastic Composites[J]. Fiber Polym 22(6), 1693–1703 (2021)

    Article  CAS  Google Scholar 

  3. Raponi, O.A., Barbosa, L.C.M., de Souza, B.R., et al.: Study of the influence of initiator content in the polymerization reaction of a thermoplastic liquid resin for advanced composite manufacturing. Adv Polym Tech 37(8), 3579–3587 (2018)

    Article  CAS  Google Scholar 

  4. Murray, J.J., Robert, C., Gleich, K., McCarthy, E.D., Ó Brádaigh, C.M.: Manufacturing of unidirectional stitched glass fabric reinforced polyamide 6 by thermoplastic resin transfer moulding. Mater. Des 189, 108–512 (2020)

  5. Obande, W., Mamalis, D., Ray, D., Yang, L., Brádaigh, C.M.: Mechanical and thermomechanical characterisation of vacuum-infused thermoplastic- and thermoset-based composites. Mater Des 175, 107–828 (2019)

  6. Murray, R.E., Penumadu, D., Cousins, D., Beach, R., Snowberg, D., Berry, D., Stebner, A.: Manufacturing and Flexural Characterization of Infusion-Reacted Thermoplastic Wind Turbine Blade Subcomponents. Appl Compos Mater 26(3), 945–961 (2019)

    Article  Google Scholar 

  7. Shanmugam L, Kazemi M, Rao Z, Lu D, Wang X, Wang, B, et al.: Enhanced Mode I fracture toughness of UHMWPE fabric/thermoplastic laminates with combined surface treatments of polydopamine and functionalized carbon nanotubes. Compos B Eng 178, 107450 (2018)

  8. Zoller, A., Escalé, P., Gérard, P.: Pultrusion of Bendable Continuous Fibers Reinforced Composites With Reactive Acrylic Thermoplastic ELIUM® Resin. Front Mater 6(13), 1–9 (2019)

    Google Scholar 

  9. Matadi Boumbimba, R., Coulibaly, M., Khabouchi, A., Kinvi-Dossou, G., Bonfoh, N., Gerard, P.: Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: Low velocity impact response at various temperatures. Compos. Struct. 160, 939–951 (2017)

    Article  Google Scholar 

  10. Bhudolia, S.K., Gohel G., Kantipudi, J, et al.: Manufacturing and investigating the load, energy and failure attributes of thin ply carbon/Elium® thermoplastic hollow composites under low-velocity impact. Mater Design 206, 109814 (2021)

  11. Gohel, G., Bhudolia, S.K., Subramanyam, E.S.B, et al.: Development and impact characterization of acrylic thermoplastic composite bicycle helmet shell with improved safety and performance. Compos Part B: Eng 109008 (2021)

  12. Bhudolia, S.K., Gohel, G., Kantipudi, J, et al.: Mechanical performance and damage mechanisms of thin rectangular carbon/Elium® tubular thermoplastic composites under flexure and low-velocity impact. Thin-Walled Struct 165, 107971 (2021)

  13. Bhudolia, S.K., Joshi, S.C., Bert, A., Di Yi, B., Makam, R., Gohel, G.: Flexural characteristics of novel carbon methylmethacrylate composites. Compos. Commun. 13, 129–133 (2019)

    Article  Google Scholar 

  14. Bhudolia, S.K., Joshi, S.C., Boon, Y.D.: Experimental and Microscopic Investigation on Mechanical Performance of Textile Spread-tow Thin Ply Composites. Fibers Polym. 20, 1036–1045 (2019)

    Article  CAS  Google Scholar 

  15. Haggui, M., EL Mahi, A., Jendli, Z., Akrout, A., Haddar, D.: Damage Analysis of Flax Fibre/Elium Composite Under Static and Fatigue Testing. International Conference Design & Modeling of Mechanical Systems. Springer, Cham (2017)

  16. Chilali, A., Zouari, W., Assarar, M., Kebir, H., Ayad, R.: Analysis of the mechanical behaviour of flax and glass fabrics-reinforced thermoplastic and thermoset resins. J REINF PLAST COMP 35(16), 1217–1232 (2016)

    Article  CAS  Google Scholar 

  17. Haggui, M., El Mahi, A., Jendli, Z., Akrout, A., Haddar, M.: Static and fatigue characterization of flax fiber reinforced thermoplastic composites by acoustic emission. Appl. Acoust. 147(4), 100–110 (2018)

    Google Scholar 

  18. Bhudolia, S.K., Gohel, G., Fai, L.K., Barsotti, R.J.: Fatigue response of ultrasonically welded carbon/elium® thermoplastic composites. Mater Lett 264, 127362 (2020)

  19. Cadieu, L., Kopp, J.B., Jumel, J., Bega, J., Froustey, C.: Temperature effect on the mechanical properties and damage mechanisms of a glass/thermoplastic laminate. J Compos Mater 54(17), 002199831989438 (2019)

    Google Scholar 

  20. Cadieu, L., Kopp, J.B., Jumel, J, et al.: Strain rate effect on the mechanical properties of a glass fibre reinforced acrylic matrix laminate. An experimental approach. Compos Struct 223,110952 (2019)

  21. Nash, N.H., Portela, A., Bachour, C., Manolakis, I., Comer, A.J.: Effect of environmental conditioning on the properties of thermosetting- and thermoplastic-matrix composite materials by resin infusion for marine applications. Compos B Eng 177, 107271 (2019)

  22. Bhudolia, S.K., Perrotey, P., Joshi, S.C.: Optimizing polymer infusion manufacture for thin ply textile composites with novel matrix system. Materials 10(3), (2017)

  23. Davies, P., Arhant, M.: Fatigue Behaviour of Acrylic Matrix Composites: Influence of Seawater. Appl Compos Mater 26(2), 507–518 (2019)

    Article  CAS  Google Scholar 

  24. Mamalis, D., Obande, W., Koutsos, V., Blackford, J.R., Ó Brádaigh, C.M., Ray, D.: Novel thermoplastic fibre-metal laminates manufactured by vacuum resin infusion: The effect of surface treatments on interfacial bonding. Mater Des 162, (2019)

  25. Pini, T., Caimmi, F., Briatico-Vangosa, F., Frassine, R., Rink, M.: Fracture initiation and propagation in unidirectional CF composites based on thermoplastic acrylic resins. Eng Fract Mech 184, 51–58 (2017)

    Article  Google Scholar 

  26. Bhudolia, S.K., Perrotey, P., Joshi, S.C.: Mode I fracture toughness and fractographic investigation of carbon fibre composites with liquid Methylmethacrylate thermoplastic matrix. Compos. Part B Eng. 134, 246–253 (2018)

    Article  CAS  Google Scholar 

  27. Barbosa, L.C.M.; Bortoluzzi, D.B.; Ancelotti, A.C.: Analysis of fracture toughness in mode II and fractographic study of composites based on Elium®150 thermoplastic matrix. Compos. Part B Eng 175, 107082 (2019)

  28. Baran, I., Warnet, L.L., Akkerman, R.: Assessment of failure and cohesive zone length in co-consolidated hybrid C/PEKK butt joint. Eng. Struct. 168, 420–430 (2018)

    Article  Google Scholar 

  29. Han, N., Baran, I., Zanjani, J.S.M., Yuksel, O., An, L.L., Akkerman, R.: Experimental and computational analysis of the polymerization overheating in thick glass/Elium® acrylic thermoplastic resin composites, Compos. Part B Eng 202, (2020)

  30. de Andrade Raponi, O., Righetti de Souza, B., Miranda Barbosa, L.C., Ancelotti Junior, A.C.: Thermal, rheological, and dielectric analyses of the polymerization reaction of a liquid thermoplastic resin for infusion manufacturing of composite materials. Polym Test 71(8), 32–37 (2018)

  31. Su-jin, Kim., Jinho Jang.: Effect of degree of polymerization on the mechanical properties of regenerated cellulose fibers using synthesized 1-allyl-3-methylimidazolium chloride. Fiber Polym (2013)

  32. Balani, K., Verma, V., Agarwal, A., Narayan, R.: Physical, Thermal, and Mechanical Properties of Polymers. Biosurfaces. John Wiley & Sons, Ltd. (2015)

  33. Demircan, G., Kisa, M., Ozen, M., et al.: Surface-modified alumina nanoparticles-filled aramid fiber-reinforced epoxy nanocomposites: preparation and mechanical properties. Iran Polym J 29, 253–264 (2020)

    Article  CAS  Google Scholar 

  34. ASTM D2344 / D2344M - 16.: Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates, ASTM Int., (2016)

  35. ASTM D5528–01.: Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International: West Conshohocken, P.A

  36. ISO 15024.: Standard Test Method for Mode I interlaminar Fracture Toughness, GIC, of Unidirectional Fibre-reinforced Polymer Matrix Composites, (1997)

  37. Perrin F, Bureau M N, Denault, J, et al. Mode I interlaminar crack propagation in continuous glass fiber/polypropylene composites: Temperature and molding condition dependence. Compos Sci Technol 63(5), 597–607 (2003)

  38. ASTM D7905/D7905M-14.: Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, ASTM International, West Conshohocken (2014)

  39. Zhao, X., Chen, W., Han, X., Zhao, Y., Du, S.: Enhancement of interlaminar fracture toughness in textile-reinforced epoxy composites with polyamide 6/graphene oxide interlaminar toughening tackifier. Compos Sci Technol 191(2), (2020)

  40. Hwan Shin, J., Kim, D., Centea, T., Nutt, S.R.: Thermoplastic prepreg with partially polymerized matrix: material and process development for efficient part manufacturing. Compos Part A: Appl Sci Manufac (2019)

  41. Sacchetti, F., Grouve, W., Warnet, L.L, et al.: Interlaminar fracture toughness of 5HS Carbon/PEEK laminates. A comparison between DCB, ELS and mandrel peel tests. Polym Test 66, 13–23 (2018)

  42. Li, Y., Liu, X., Chen, G., Ren, C.: Study on interfacial debonding stress and damage mechanisms of C/SiC composites using acoustic emission. Ceram. Int. 47(4), 4512–4520 (2021)

    Article  CAS  Google Scholar 

  43. Sacchetti, F., Wouter, J.B., Grouve, L.L., Villegas, W.I.F.: Effect of cooling rate on the interlaminar fracture toughness of unidirectional Carbon/PPS laminates. Eng Fract Mech 203, 126–136 (2018)

  44. Rafiullah, K.: Fiber bridging in composite laminates: A literature review, Composite Structures 229, 111418,ISSN 0263–8223 (2019)

  45. Sacchetti, F., Grouve, W.J., Warnet, L.L., Villegas, I.F.: Effect of cooling rate on the interlaminar fracture toughness of unidirectional Carbon/PPS laminates. Eng Fract Mech 203, 126–136 (2018)

    Article  Google Scholar 

  46. Rzeczkowski, J.: An experimental analysis of the end-notched flexure composite laminates beams with elastic couplings. Continuum Mech. Thermodyn. 33, 2331–2343 (2021)

    Article  Google Scholar 

  47. Hunt, C., Kratz, J., Partridge, I.K.: Cure path dependency of mode I fracture toughness in thermoplastic particle interleaf toughened prepreg laminates. Compos. A 87, 109–114 (2016)

    Article  CAS  Google Scholar 

  48. Zhang, J., Fox, B.L.: Manufacturing influence on the delamination fracture behavior of the T800H/3900-2 carbon fiber reinforced polymer composites. Mater Manuf Process 22, 768–772 (2007)

    Article  CAS  Google Scholar 

  49. Tucker, R., Compston, P., Jar, P.Y.: The effect of post-cure duration on the mode I interlaminar fracture toughness of glass-fibre reinforced vinylester. Compos. A Appl. Sci. Manuf. 32(1), 129–134 (2001)

    Article  CAS  Google Scholar 

  50. Lindsey, K.A., Rudd, C.D., Fraser, I.M.: Effects of post-cure on the interfacial properties of glass fibre-urethane methacrylate composites. J. Mater. Sci. Lett. 12(12), 894–897 (1993)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to LuLing An or Ismet Baran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, N., Yuksel, O., Zanjani, J.S.M. et al. Experimental Investigation of the Interlaminar Failure of Glass/Elium® Thermoplastic Composites Manufactured With Different Processing Temperatures. Appl Compos Mater 29, 1061–1082 (2022). https://doi.org/10.1007/s10443-021-10000-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-10000-5

Keywords

Navigation