Skip to main content
Log in

Influence of Large Framed Mold Placement in Autoclave on Heating Performance

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

For large composite parts manufactured by autoclave curing process, temperature uniformity of the mold is essential to ensure final part quality. This paper aims to investigate the influence of mold placement variation in autoclave on heating performance of a large framed mold and find the optimal mold placement parameters for improving the temperature uniformity and heating rate. Firstly, a computational fluid dynamics (CFD) based autoclave simulation model is established and validated, which offers reliable prediction of the mold temperature field and flow distribution in autoclave. Then, numerical experiments are performed based on the autoclave simulation model and response surface methodology (RSM) to establish relations between mold placement variables and responses including temperature uniformity and heating rate. Finally, using the established regression model, multi-objective optimization is conducted considering both temperature uniformity and heating rate. The optimal mold placement parameters are obtained successfully which improves the temperature uniformity significantly with little change in heating rate comparing to the commonly adopted mold placement approach. The strategies provided by mold placement optimization can be applied for various large framed molds in composite manufacturing improving the autoclave curing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Michael, C.N., Michael, N.: Composite Airframe Structures, 5th edition. Hong Kong Conmilit Press (2005)

  2. Nele, L., Caggiano, A., Teti, R.: Autoclave Cycle Optimization for High Performance Composite Parts Manufacturing. Procedia CIRP 57(C), 241–6 (2016) https://doi.org/10.1016/j.procir.2016.11.042

    Article  Google Scholar 

  3. Johnston, A.: An Integrated Model of the Development of Process-Induced Deformations in Autoclave Processing of Composite Structures. Ph.D. thesis, University of British Columbia, Vancouver (1997)

  4. Xie, G.N., Liu, J., Zang, W.H., et al.: Simulation and Improvement of Temperature Distributions of a Framed Mold during the Autoclave Composite Curing Process. J. Eng. Thermophys. 22(1), 43–61 (2013)

    Article  Google Scholar 

  5. Parlevliet, P.P., Bersee, H.E.N., Beukers, A.: Residual Stresses in Thermoplastic Composites – a Study of the Literature. Part III: Effects of Thermal Residual Stresses. Compos. A: Appl. Sci. Manuf. 38(6), 0-1596 (2007)

  6. Kim, J.S., Lee, D.G.: Development of an Autoclave Cure Cycle with Cooling and Reheating Steps for Thick Thermoset Composite Laminates. J. Compos. Mater. 31, 2264–2282 (1997)

    Article  CAS  Google Scholar 

  7. Park, H.C., Goo, N.S., Min, K.J., et al.: Three-Dimensional Cure Simulation of Composite Structures by the Finite Element Method. Compos. Struct. 62(1), 51–57 (2003)

    Article  Google Scholar 

  8. Gopal, A.K., Adali, S., Verijenko, V.E.: Optimal Temperature Profiles for Minimum Residual Stress in the Cure Process of Polymer Composites. Compos. Struct. 48(1–3), 99–106 (2000)

    Article  Google Scholar 

  9. Guo, Z.S., Du, S., Zhang, B.: Temperature Field of Thick Thermoset Composite Laminates during Cure Process. Compos. Sci. Technol. 65(3–4), 517–523 (2005)

    Article  CAS  Google Scholar 

  10. Aleksendrić, D., Carlone, P., Ćirović, V.: Optimization of the Temperature-Time Curve for the Curing Process of Thermoset Matrix Composites. Appl. Compos. Mater. 23(5), 1–17 (2016)

    Article  Google Scholar 

  11. Struzziero, G., Skordos, A.A.: Multi-objective Optimization of the Cure of Thick Components. Compos. A: Appl. Sci. Manuf. 93, 126–136 (2017)

    Article  CAS  Google Scholar 

  12. Bohne, T., Frerich, T., Jendrny, J., Jürgens, J.P., Ploshikhin, V.: Simulation and Validation of Airflow and Heat Transfer in an Autoclave Process for Definition of Thermal Boundary Conditions during Curing of Composite Parts. J. Compos. Mater. 52(12), 1677–1687 (2018)

    Article  Google Scholar 

  13. Hudek, M.: Examination of Heat Transfer during Autoclave Processing of Polymer Composites. Master’s Thesis, University of Manitoba, Canada (2001)

  14. Chen, F., Zhan, L., Xu, Y.: Simulation of Mold Temperature Distribution in a Running Process Autoclave. Iran. Polym. J. 24(11), 927–934 (2015)

    Article  Google Scholar 

  15. Chen, F., Zhan, L., Li, S.: Refined Simulation of Temperature Distribution in Molds during Autoclave Process. Iran. Polym. J. 25(9), 775–785 (2016)

    Article  Google Scholar 

  16. Wang, Q., Wang, L., Zhu, W., Xu, Q., Ke, Y.: Design Optimization of Molds for Autoclave Process of Composite Manufacturing. J. Reinf. Plast. Compos. 36(21), 1564–1576 (2017)

    Article  CAS  Google Scholar 

  17. Wang, L., Zhu, W., Wang, Q., Xu, Q., Ke, Y.: A Heat-Balance Method for Autoclave Process of Composite Manufacturing. J. Compos. Mater. 53(5), 641–652 (2019)

    Article  Google Scholar 

  18. Kluge, J.N.E., Lundström, T.S., Ljung, A.L., et al.: An Experimental Study of Temperature Distribution in an Autoclave. J. Reinf. Plast. Compos. 35(7), 566–578 (2016)

    Article  CAS  Google Scholar 

  19. Kluge, J.N.E., Lundström, T.S., Westerberg, L.G., et al.: Modelling Heat Transfer Inside an Autoclave: Effect of Radiation. J. Reinf. Plast. Compos. 35(14), 1126–1142 (2016)

    Article  CAS  Google Scholar 

  20. Weber, T.A., Arent, J.C., Munch, L., Duhovic, M., Balvers, J.M.: A Fast Method for the Generation of Boundary Conditions for Thermal Autoclave Simulation. Compos. A: Appl. Sci. Manuf. 88, 216–25 (2016)

    Article  CAS  Google Scholar 

  21. Maffezzoli, A., Grieco, A.: Optimization of Parts Placement in Autoclave Processing of Composites. Appl. Compos. Mater. 20(3), 233–48 (2013)

    Article  CAS  Google Scholar 

  22. Dumont, F., Fröhlingsdorf, W., Weimer, C.: Virtual Autoclave Implementation for Improved Composite Part Quality and Productivity. CEAS Aeronaut. J. 4(3), 277–89 (2013)

    Article  Google Scholar 

  23. ANSYS FLUENT User’s Guide, version 12.0 (2009)

  24. Design Expert, 10.0v, Stat-Ease Inc., 2021 East Hennepin Avenue, Suite 480, Minneapolis

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. 51805476)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolkun, D., Wang, H., Wang, H. et al. Influence of Large Framed Mold Placement in Autoclave on Heating Performance. Appl Compos Mater 27, 811–837 (2020). https://doi.org/10.1007/s10443-020-09835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09835-1

Keywords

Navigation