Skip to main content
Log in

In Situ Strength Model for Continuous Fibers and Multi-Scale Modeling the Fracture of C/SiC Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A new in situ strength model of carbon fibers was developed based on the distribution of defects to predict the stress-strain response and the strength of C/SiC composites. Different levels of defects in the fibers were considered in this model. The defects in the fibers were classified by their effects on the strength of the fiber. The strength of each defect and the probability that the defect appears were obtained from the tensile test of single fibers. The strength model of carbon fibers was combined with the shear-lag model to predict the stress-strain responses and the strengths of fiber bundles and C/SiC minicomposites. To verify the strength model, tensile tests were performed on fiber bundles and C/SiC minicomposites. The predicted and experimental results were in good agreement. Effects of the fiber length, the fiber number and the heat treatment on the final strengths of fiber bundles and C/SiC minicomposites were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yu, G., Gao, X., Fang, G., Xue, J., Song, Y.: Strain field evolution of 2D needled C/SiC composites under tension. J. Eur. Ceram. Soc. 37, 531–537 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.09.030

    Article  CAS  Google Scholar 

  2. Zhang, S., Gao, X., Chen, J., Dong, H., Song, Y.: Strength model of the matrix element in SiC/SiC composites. Mater. Design. 101, 66–71 (2016). https://doi.org/10.1016/j.matdes.2016.03.166

    Article  CAS  Google Scholar 

  3. Fang, G., Gao, X., Yu, G., Zhang, S., Chen, J., Song, Y.: Effect of the stress level on the fatigue strengthening behavior of 2D needled C/SiC CMCs at room temperature. Mater. Design. 89, 432–438 (2016). https://doi.org/10.1016/j.matdes.2015.10.013

    Article  CAS  Google Scholar 

  4. Genin, G.M., Hutchinson, J.W.: Failures at Attachment Holes in Brittle Matrix Laminates. J. Compos. Mater. 33, 1600–1618 (1999). https://doi.org/10.1177/002199839903301702

    Article  CAS  Google Scholar 

  5. Mkaddem, A., El Mansori, M.: Finite element analysis when machining UGF-reinforced PMCs plates: Chip formation, crack propagation and induced-damage. Mater. Design. 30(8), 3295–3302 (2009). https://doi.org/10.1016/j.matdes.2008.12.009

    Article  CAS  Google Scholar 

  6. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980). https://doi.org/10.1115/1.3153664

    Article  Google Scholar 

  7. Kaiser, C., Weihs, H., Zuknik, K.H., Obst, A.: Failure criteria for FRP and CMC: theory, experiments and guidelines. European Conference on Spacecraft Structures, Materials & Mechanical Testing, Noordwijk (2005)

    Google Scholar 

  8. Baxevanis, T., Charalambakis, N.: A micromechanically based model for damage-enhanced creep-rupture in continuous fiber-reinforced ceramic matrix composites. Mech. Mater. 42, 570–580 (2010). https://doi.org/10.1016/j.mechmat.2010.02.004

    Article  Google Scholar 

  9. Dutton, R.E., Pagano, N.J., Kim, R.Y., Parthasarathy, T.A.: Modeling the ultimate tensile strength of unidirectional glass-matrix composites. J. Am. Ceram. Soc. 83, 166–174 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01166.x

    Article  CAS  Google Scholar 

  10. Liao, K., Reifsnider, K.L.: A tensile strength model for unidirectional fiber-reinforced brittle matrix composite. Int. J. Fract. 106, 95–115 (2000). https://doi.org/10.1023/A:1007645817

    Article  CAS  Google Scholar 

  11. Zhang, R.L., Gao, B., Ma, Q.H., Zhang, J., Cui, H.Z., Liu, L.: Directly Grafting Graphene Oxide Onto Carbon Fiber and the Effect On the Mechanical Properties of Carbon Fiber Composites. Mater. Design. 93, 364–369 (2016). https://doi.org/10.1016/j.matdes.2016.01.003

    Article  CAS  Google Scholar 

  12. Loidl, D., Paris, O., Rennhofer, H., Müller, M., Peterlik, H.: Skin-core structure and bimodal Weibull distribution of the strength of carbon fibers. Carbon. 45, 2801–2805 (2007). https://doi.org/10.1016/j.carbon.2007.09.011

    Article  CAS  Google Scholar 

  13. Nemeth, N., Walker, A., Baker, E., Murthy, P., Bratton, R.: Large-scale Weibull analysis of H-451 nuclear-grade graphite rupture strength. Carbon. 58, 208–225 (2013). https://doi.org/10.1016/j.carbon.2013.02.054

    Article  CAS  Google Scholar 

  14. Naik, D.L., Fronk, T.H.: Weibull distribution analysis of the tensile strength of the kenaf bast fiber. Fiber Polym. 17, 1696–1701 (2016). https://doi.org/10.1007/s12221-016-6176-6

    Article  CAS  Google Scholar 

  15. Guo, M., Zhang, T.H., Chen, B.W., Cheng, L.: Tensile strength analysis of palm leaf sheath fiber with Weibull distribution. Compos. Part A-Appl. Sci. Manuf. 62, 45–51 (2014). https://doi.org/10.1016/j.compositesa.2014.03.018

    Article  CAS  Google Scholar 

  16. Sakin, R., Ay, İ.: Statistical analysis of bending fatigue life data using Weibull distribution in glass-fiber reinforced polyester composites. Mater. Design. 29, 1170–1181 (2008). https://doi.org/10.1016/j.matdes.2007.05.005

    Article  CAS  Google Scholar 

  17. Vautard, F., Dentzer, J., Nardin, M., Schultz, J., Defoort, B.: Influence of surface defects on the tensile strength of carbon fibers. Appl. Surf. Sci. 22, 185–193 (2014). https://doi.org/10.1016/j.apsusc.2014.10.066

    Article  CAS  Google Scholar 

  18. Naslain, R., Lamon, J., Pailler, R., Bourrat, X., Guette, A., Langlais, F.: Micro/minicomposites: a useful approach to the design and development of non-oxide CMCs. Compos. Part A-Appl. Sci. Manuf. 30, 537–547 (1999). https://doi.org/10.1016/S1359-835X(98)00147-X

    Article  Google Scholar 

  19. Maillet, E., Godin, N., R’Mili, M., Reynaud, P., Fantozzi, G., Lamon, J.: Damage monitoring and identification in SiC/SiC minicomposites using combined acousto-ultrasonics and acoustic emission. Compos. Part A-Appl. Sci. Manuf. 57, 8–15 (2014). https://doi.org/10.1016/j.compositesa.2013.10.010

    Article  CAS  Google Scholar 

  20. Almansour, A., Maillet, E., Ramasamy, S., Morscher, G.N.: Effect of fiber content on single tow SiC minicomposite mechanical and damage properties using acoustic emission. J. Eur. Ceram. Soc. 35, 3389–3399 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.06.001

    Article  CAS  Google Scholar 

  21. Gao, X., Zhang, S., Fang, G., Song, Y.: Distribution of slip regions on the fiber–matrix interface of ceramic matrix composites under arbitrary loading. J. Reinf. Plast. Compos. 34, 1713–1723 (2015). https://doi.org/10.1177/0731684415596596

    Article  CAS  Google Scholar 

  22. Lissart, N., Lamon, J.: Damage and failure in ceramic matrix minicomposites: Experimental study and model. Acta Mater. 45, 1025–1044 (1997). https://doi.org/10.1016/S1359-6454(96)00224-8

    Article  CAS  Google Scholar 

  23. Curtin, W.A., Ahn, B.K., Takeda, N.: Modeling brittle and tough stress–strain behavior in unidirectional ceramic matrix composites. Acta Mater. 46, 3409–3420 (1998). https://doi.org/10.1016/S1359-6454(98)00041-X

    Article  CAS  Google Scholar 

  24. Cho, C., Holmes, J.W., Barber, J.R.: Estimation of interfacial shear in ceramic composites from frictional heating measurements. J. Am. Ceram. Soc. 74, 2802–2808 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06846.x

    Article  CAS  Google Scholar 

  25. Zhang, S., Gao, X., Chen, J., Dong, H., Song, Y., Zhang, H.: Effects of micro-damage on the nonlinear constitutive behavior of SiC/SiC minicomposites. J. Ceram. Sci. Technol. 7, 341–348 (2016). https://doi.org/10.4416/JCST2016-00040

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China [grant number 2017YFB0703200]; the National Natural Science Foundation of China [grant numbers 51575261, 51675266]; the Funding of Jiangsu Innovation Program for Graduate Education [grant number KYLX_0300]; and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiguang Gao or Yingdong Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Gao, X. & Song, Y. In Situ Strength Model for Continuous Fibers and Multi-Scale Modeling the Fracture of C/SiC Composites. Appl Compos Mater 26, 357–370 (2019). https://doi.org/10.1007/s10443-018-9696-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-018-9696-y

Keywords

Navigation