Skip to main content
Log in

Transverse Tensile Properties of 3 Dimension-4 Directional Braided Cf/SiC Composite Based on Double-Scale Model

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this thesis, a double-scale model for 3 Dimension-4 directional(3D-4d) braided C/SiC composites(CMCs) has been proposed to investigate mechanical properties of it. The double-scale model involves micro-scale which takes fiber/matrix/porosity in fibers tows into consideration and the unit cell scale which considers the 3D-4d braiding structure. Basing on the Micro-optical photographs of composite, we can build a parameterized finite element model that reflects structure of 3D-4d braided composites. The mechanical properties of fiber tows in transverse direction are studied by combining the crack band theory for matrix cracking and cohesive zone model for interface debonding. Transverse tensile process of 3D-4d CMCs can be simulated by introducing mechanical properties of fiber tows into finite element of 3D-4d braided CMCs. Quasi-static tensile tests of 3D-4d braided CMCs have been performed with PWS-100 test system. The predicted tensile stress-strain curve by the double scale model finds good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Dassios, K.G., Aggelis, D.G., Kordatos, E.Z., et al.: Cyclic loading of a SiC-fiber reinforced ceramic matrix composite reveals damage mechanisms and thermal residual stress state[J]. Composite: Part A. 44(1), 105–113 (2013)

    Article  CAS  Google Scholar 

  2. Chang, Y., Jiao, G., Wang, B., et al.: Elastic Behavior Analysis of 3D Angle-Interlock Woven Ceramic Composites[J]. Acta Mechanica Solida Sinica. 19(2), 152–159 (2006)

    Article  Google Scholar 

  3. Liu, X., Cheng, L., Zhang, L., et al.: Tensile properties and damage evolution in a 3D C/SiC composite at cryogenic temperatures[J]. Mater. Sci. Eng. A. 528(25–26), 7524–7528 (2011)

    Article  CAS  Google Scholar 

  4. Kang, T.J., Kim, S., Jung, K.: Prediction of Mechanical Properties of 3-D Braided Composite using CAD system[J]. Text. Res. J. 78, 174–182 (2008)

    Article  CAS  Google Scholar 

  5. Yu, X.G., Cui, J.Z.: The prediction on mechanical properties of 4-step braided composites via two-scale method[J]. Compos. Sci. Technol. 67, 471–480 (2007)

    Article  CAS  Google Scholar 

  6. Sun, H., Di, S., Zhang, N., et al.: Micromechanics of braided composites via multivariable FEM[J]. Comput. Struct. 81, 2021–2027 (2003)

    Article  Google Scholar 

  7. Chen, L., Tao, X.M., Choy, C.L.: On the microstructure of three-dimensional braided preforms[J]. Compos. Sci. Technol. 59(3), 391–404 (1999)

    Article  CAS  Google Scholar 

  8. Fang, G., Liang, J., Wang, B.: Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension[J]. Compos. Struct. 89, 126–133 (2009)

    Article  Google Scholar 

  9. Fang, G., Liang, J., Wang, Y., et al.: The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites[J]. Composites Part A-Applied Science And Manufacturing. 40, 343–350 (2009)

    Article  Google Scholar 

  10. Niu, X., Sun Z., Kong, C., et al: The elastic modulus prediction of 3 dimension-4 directional braided Cf/SiC composite based on double-scale model[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed. 30(3), 500–508 (2015)

  11. Budiansky, B., Evans, A.G., Hutchinson, J.W.: Fiber-Matrix Debonding Effects on Cracking in Aligned Fiber Ceramic Composites[J]. Int. J. Solids Struct. 32(3–4), 315–328 (1995)

    Article  Google Scholar 

  12. Henstenburg, R.B., Phoenix, S.L.: Interface Shear Strength Studies Using the Singke-Filament-Composite Test. Part II: A Probability Model and Monte Carlo Simulation[J]. Polym. Compos. 10(6), 389–408 (1989)

    Article  CAS  Google Scholar 

  13. Netravali, A.N., Henstenburg, R.B., Phoenix, S.L., et al.: Interface Shear Strength Studies Using the Singke-Filament-Composite Test. I:Experiments on Graphite Fibers in Epoxy[J]. Polym. Compos. 10(4), 226–241 (1989)

    Article  CAS  Google Scholar 

  14. Gundel, D.B., Wawner, F.E.: Experimental and Theroetical Assessment of the Longitudinal Tensile Strength of Unidirectional SiC-fiber/Titanium-matrix Composites[J]. Compos. Sci. Technol. 57(4), 471–481 (1997)

    Article  CAS  Google Scholar 

  15. Stawovy, R.H., Kampe, S.L., Curtin, W.A.: Mechanical Behavior of Glass and Blackglas® Ceramic Matrix Composites[J]. Acta Mater. 45(12), 5317–5325 (1997)

    Article  CAS  Google Scholar 

  16. Duva, J.M., Curtin, W.A., Wadley, N.G.: An Ultimate Tensile Strength Dependence on Processing for Consolidated Metal Matrix Composites[J]. Acta Metall. Mater. 43(3), 1119–1126 (1995)

    Article  CAS  Google Scholar 

  17. Curtin, W.A.: Ultimate Strengths of Fiber-reinforced Ceramics and Metals[J]. Composites. 24(2), 98–102 (1993)

    Article  CAS  Google Scholar 

  18. Curtin, W.A.: Theory of Mechanical Properties of Ceramic-matrix Composites[J]. Journal of the Ameraican Ceramic Society. 74(11), 2837–2845 (1991)

    Article  CAS  Google Scholar 

  19. Curtin, W.A., Ahn, B.K., Takeda, N.: Modeling Brittle and Tough Stress–strain Behavior in Unidirectional Ceramic Matrix Composites[J]. Acta Mater. 46(10), 3409–3420 (1998)

    Article  CAS  Google Scholar 

  20. Li, L.: Fatigue Damage Models and Life Prediction of Long-fiber-reinforced Ceramic Matrix Composite[D]. Nanjing University of Aeronautics and Astronautics, Nanjing (2010)

    Google Scholar 

  21. Miao, Y.: Research on the failure models of matrix in ceramic matrix composites[D]. Nanjing University of Aeronautics and Astronautics, Nanjing (2007)

    Google Scholar 

  22. Vanswijgenhoven, E., Wevers, M., Van Der Biest, O.: The transverse strain response of cross-plied fiber-reinforced ceramic matrix composites[J]. Compos. Sci. Technol. 59(10), 1469–1481 (1999)

  23. Vanswijgenhowen, E., Van Der Biest, O.: The Relationship between Longitudinal Stress and Transverse Strain During Tensile Testing of Unidirectional Fiber Toughened Ceramic Matrix Composites[J]. Acta Mater. 45(8), 3349–3362 (1997)

    Article  Google Scholar 

  24. Bažant, Z.P., Oh, B.H.: Crack band theory for fracture of concrete[J]. Mater. Struct. 16(3), 155–177 (1983)

    Google Scholar 

  25. Meyer, P., Waas, A.M.: FEM predictions of damage in continous fiber ceramic matrix composites under transverse tension using the crack band method[J]. Acta Mater. 102, 292–303 (2016)

    Article  CAS  Google Scholar 

  26. Safari, A., Tukovic, Z., Cardiff, P., et al.: Interfacial separation of a mature biofilm from a glass surface – A combined experimental and cohesive zone modelling approach[J]. J. Mech. Behav. Biomed. Mater. 54, 205–218 (2016)

    Article  CAS  Google Scholar 

  27. Alfano, G., Crisfield, M.A.: Finite Element Interface Models for the Delamination Anaylsis of Laminated Composites: Mechanical and Computational Issues[J]. Int. J. Numer. Methods Eng. 50, 1701–1736 (2001)

    Article  Google Scholar 

  28. Needleman, A.: Micromechanical Modelling of Interfacial Decohesion[J]. Ultramicroscopy. 40(3), 203–214 (1992)

    Article  Google Scholar 

  29. Gao, X.-G.: The Damage Coupled Macro- and Micro- Constitutive Models for Ceramic Matrix Composites[D]. Nanjing University of Aeronautics and Astronautics, Nanjing (2008)

    Google Scholar 

  30. Dalmaz, A., Ducret, D., Guerjouma, R.E., et al.: Elastic moduli of a 2.5D Cf/SiC composite: experimental and theoretical estimates[J]. Compos. Sci. Technol. 60, 913–925 (2000)

    Article  CAS  Google Scholar 

  31. Puglia, P.D., Sheikh, M.A., Hayhurst D.R.: Classification and quantification of initial porosity in a CMC laminate [J]. Composites Part A. 35(2), 223–230 (2004)

Download references

Acknowledgements

The work was supported by National Basic Research Program of China; National Natural Science Foundation of China (51675266), Aeronautical Science Foundation of China (2014ZB52024), the Fundamental Research Funds for the Central Universities (NJ20160038); Funding of Jiangsu Innovation Program for Graduate Education(CXLX13_165) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingdong Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, X., Sun, Z. & Song, Y. Transverse Tensile Properties of 3 Dimension-4 Directional Braided Cf/SiC Composite Based on Double-Scale Model. Appl Compos Mater 25, 1001–1019 (2018). https://doi.org/10.1007/s10443-017-9648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9648-y

Keywords

Navigation