Skip to main content

Advertisement

Log in

Numerical Simulation of Thermal Response and Ablation Behavior of a Hybrid Carbon/Carbon Composite

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The thermal response and ablation behavior of a hybrid carbon/carbon (C/C) composite are studied herein by using a numerical model. This model is based on the energy- and mass-conservation principles as well as on the calculation of the thermophysical properties of materials. The thermal response and ablation behavior are simulated from the perspective of the matrix and fiber components of a hybrid C/C composite. The thermophysical properties during ablation are calculated, and a moving boundary is implemented to consider the recession of the ablation surface. The temperature distribution, thermophysical properties, char layer thickness, linear ablation rate, mass flow rate of the pyrolysis gases, and mass loss of the hybrid C/C composite are quantitatively predicted. This numerical study describing the thermal response and ablation behavior provides a fundamental understanding of the ablative mechanism of a hybrid C/C composite, serving as a reference and basis for further designs and optimizations of thermoprotective materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ρ :

Density, kg/m3

C p :

Specific heat, J/(kg · K)

k :

Heat conductivity, W/(m · K)

Δh :

Enthalpy, J/kg

\( \dot{m} \) :

Mass flow rate, kg/(m2 ·s)

A :

Preexponential factor, s−1

E :

Activation energy, J/mol

R :

Gas constant, J/(mol·K)

T :

Temperature, K

K B :

Boltzmann constant, J/K

M :

Molecular weight, kg/mol

m :

Mass, kg

t :

Time, s

C :

Mass fraction

β :

Reaction probability

Δt :

Time increment, s

\( \dot{S} \) :

Recession rate, m/s

δ j :

Nodal displacement in the j direction, m

\( {\dot{m}}_1 \), \( {\dot{m}}_2 \) :

Mass flow rate of gases, kg/(m2 ·s)

q conv :

Total convective heat flux, W/m2

q N :

Conduction heat flux, W/m2

q rad :

Radiation heat flux, W/m2

n :

Order of reaction

f :

Fiber

m :

Matrix

g :

Pyrolysis gas

v :

Virgin material

c :

Char

w :

Surface

i :

Species

References

  1. Fitzer, E.: The future of carbon-carbon composites. Carbon. 25, 163–190 (1987)

    Article  Google Scholar 

  2. Amada, S., Wu, Y.N., Qi, Z.M., Akiyama, S.: Thermal shock resistance of carbon-carbon (C/C) composite by laser irradiation technique. Ceram. Int. 25, 61–67 (1999)

    Article  Google Scholar 

  3. Lu, J., Hao, K., Liu, L., Li, H., Li, K., Qu, J., Yan, X.: Ablation resistance of SiC-HfC-ZrC multiphase modified carbon/carbon composites. Corros. Sci. 103, 1–9 (2016)

    Article  Google Scholar 

  4. Borie, V., Brulard, J., Lengelle, G.: Aerothermochemical analysis of carbon-carbon nozzle regression in solid-propellant rocket motors. J. Propuls. Power. 5, 665–673 (2012)

    Article  Google Scholar 

  5. Thakre, P., Yang, V.: Chemical erosion of carbon-carbon/graphite nozzles in solid-propellant rocket motors. J. Propuls. Power. 24, 822–833 (2008)

    Article  Google Scholar 

  6. Bianchi, D., Nasuti, F.: Thermochemical erosion analysis of carbon-carbon nozzles in solid-propellant rocket motors. Proc. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA paper no. 2010–7075, Nashville, TN (2010)

  7. Lachaud, J., Vignoles, G.L.: A Brownian motion technique to simulate gasification and its application to C/C composite ablation. Comput. Mater. Sci. 44, 1034–1041 (2009)

    Article  Google Scholar 

  8. Lachaud, J., Aspa, Y., Vignoles, G.L.: Analytical modeling of the steady state ablation of a 3D C/C composite. Int. J. Heat Mass Transf. 51, 2614–2627 (2008)

    Article  Google Scholar 

  9. Vignoles, G.L., Lachaud, J., Aspa, Y., Goyhénèche, J.M.: Ablation of carbon-based materials: multiscale roughness modelling. Compos. Sci. Technol. 69, 1470–1477 (2009)

    Article  Google Scholar 

  10. Duffa, G., Vignoles, G.L., Goyhénèche, J.M., Aspa, Y.: Ablation of carbon-based materials: investigation of roughness set-up from heterogeneous reactions. Int. J. Heat Mass Transf. 48, 3387–3401 (2005)

    Article  Google Scholar 

  11. Martin, A.: Volume averaged modeling of the oxidation of porous carbon fiber material. Proc. 44th AIAA Thermophysics Conference, AIAA paper no. 2013–2636, San Diego, CA (2013)

  12. Panerai, F., Mansour, N.N., Lachaud, J., Martin, A.: Experimental and numerical study of carbon fiber oxidation. Proc. 52nd Aerospace Sciences Meeting, AIAA paper no. 2014–1208. National Harbor, Maryland (2014)

  13. Lachaud, J., Eekelen, T.V., Scoggins, J.B., Magin, T.E., Mansour, N.N.: Detailed chemical equilibrium model for porous ablative materials. Int. J. Heat Mass Transf. 90, 1034–1045 (2015)

    Article  Google Scholar 

  14. Lachaud, J., Mansour, N.N.: Porous-material analysis toolbox based on OpenFOAM and applications. J. Thermophys. Heat Transf. 28, 191–202 (2014)

    Article  Google Scholar 

  15. Lachaud, J., Scoggins, J.B., Magin, T.E., Meyer, M.G., Mansour, N.N.: A generic local thermal equilibrium model for porous reactive materials submitted to high temperatures. Int. J. Heat Mass Transf. 108, 1406–1417 (2017)

    Article  Google Scholar 

  16. Schrooyen, P., Hillewaert, K., Magin, T.E., Chatelain, P.: Fully implicit discontinuous Galerkin solver to study surface and volume ablation competition in atmospheric entry flows. Int. J. Heat Mass Transf. 103, 108–124 (2016)

    Article  Google Scholar 

  17. Ferguson, J.C., Panerai, F., Lachaud, J., Martin, A., Bailey, S.C.C., Mansour, N.N.: Modeling the oxidation of low-density carbon fiber material based on micro-tomography. Carbon. 96, 57–65 (2016)

    Article  Google Scholar 

  18. Li, W., Huang, H., Xu, X.: A coupled thermal/fluid/chemical/ablation method on surface ablation of charring composites. Int. J. Heat Mass Transf. 109, 725–736 (2017)

    Article  Google Scholar 

  19. Li, W., Huang, H., Wang, Q., Zhang, Z.: Protection of pyrolysis gases combustion against charring materials’ surface ablation. Int. J. Heat Mass Transf. 102, 10–17 (2016)

    Article  Google Scholar 

  20. Li, W., Huang, H., Tian, Y., Zhao, Z.: Nonlinear analysis on thermal behavior of charring materials with surface ablation. Int. J. Heat Mass Transf. 84, 245–252 (2015)

    Article  Google Scholar 

  21. Li, W., Huang, H., Ai, B., Zhang, Z.: On the novel designs of charring composites for thermal protection application in reentry vehicles. Appl. Therm. Eng. 93, 849–855 (2016)

    Article  Google Scholar 

  22. Scoggins, J.B., Mansour, N.N., Hassan, H.A.: Development of a reduced kinetic mechanism for PICA pyrolysis products. Proc. 42nd AIAA Thermophysics Conference, AIAA paper no. 2011–3126, Honolulu, Hawaii (2011)

  23. Scoggins, J.B., Hassan, H.A.: Pyrolysis mechanism of PICA, AIAA paper. Proc. 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA paper no. 2010–4655, Chicago, Illinois (2010)

  24. Aghaaliakbari, B., Jaid, A.J., Zeinali, M.A.A.: Computational simulation of ablation phenomena in glass-filled phenolic composites. Iran. J. Chem. Chem. Eng. 34, 97–106 (2015)

    Google Scholar 

  25. Shi, S., Li, L., Fang, G., Liang, J., Yi, F., Lin, G.: Three-dimensional modeling and experimental validation of thermomechanical response of FRP composites exposed to one-sided heat flux. Mater. Des. 99, 565–573 (2016)

    Article  Google Scholar 

  26. Shi, S., Li, L., Liang, J., Tang, S.: Surface and volumetric ablation behaviors of sifrp composites at high heating rates for thermal protection applications. Int. J. Heat Mass Transf. 102, 1190–1198 (2016)

    Article  Google Scholar 

  27. Gibson, A.G., Browne, T.N.A., Feih, S., Mouritz, A.P.: Modeling composite high temperature behavior and fire response under load. J. Compos. Mater. 46, 2005–2022 (2012)

    Article  Google Scholar 

  28. Yin, T., Zhang, Z., Li, X., Feng, X., Feng, Z., Wang, Y., He, L., Gong, X.: Modeling ablative behavior and thermal response of carbon/carbon composites. Comput. Mater. Sci. 95, 35–40 (2014)

    Article  Google Scholar 

  29. Wang, C.: Numerical analyses of ablative behavior of C/C composite materials. Int. J. Heat Mass Transf. 95, 720–726 (2016)

    Article  Google Scholar 

  30. Wang, C., Liang, J., Wu, S., Du, S.: Numerical simulation of c/c composites coupled thermo-mechanical field under the condition of high temperatures and ablation. Acta Mater. Compos. Sin. 23, 143–148 (2006)

    Google Scholar 

  31. Meng, S., Zhou, Y., Xie, W., Yi, F., Du, S.: Multiphysics coupled fluid/thermal/ablation simulation of carbon/carbon composites. J. Spacecr. Rocket. 53, 930–935 (2016)

    Article  Google Scholar 

  32. Torre, L., Kenny, J.M., Maffezzoli, A.M.: Degradation behaviour of a composite material for thermal protection systems part II–process simulation. J. Mater. Sci. 33, 3145–3149 (1998)

    Article  Google Scholar 

  33. Riccio, A., Damiano, M., Zarrelli, M., Giordano, M., Scaramuzzino, F.: Simulating the response of composite plates to fire. Appl. Compos. Mater. 21, 511–524 (2014)

    Article  Google Scholar 

  34. Sanoj, P., Kandasubramanian, B.: Hybrid carbon-carbon ablative composites for thermal protection in aerospace. J. Compos. 2014, 1–15 (2014)

    Article  Google Scholar 

  35. Riccio, A., Damiano, M., Zarrelli, M., Scaramuzzino, F.: Three-dimensional modeling of composites fire behavior. J. Reinf. Plast. Compos. 33, 619–629 (2014)

    Article  Google Scholar 

  36. Chen, Y.K., Milos, F.S.: Navier–stokes solutions with finite rate ablation for planetary mission earth reentries. J. Spacecr. Rocket. 42, 961–970 (2005)

    Article  Google Scholar 

  37. Turchi, A., Bianchi, D., Nasuti, F., Onofri, M.: A numerical approach for the study of the gas–surface interaction in carbon–phenolic solid rocket nozzles. Aerosp. Sci. Technol. 27, 25–31 (2013)

    Article  Google Scholar 

  38. Paglia, L., Tirillò, J., Marra, F., Bartuli, C., Simone, A., Valente, T., Pulci, G.: Carbon-phenolic ablative materials for re-entry space vehicles: plasma wind tunnel test and finite element modeling. Mater. Des. 90, 1170–1180 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Li, X. Numerical Simulation of Thermal Response and Ablation Behavior of a Hybrid Carbon/Carbon Composite. Appl Compos Mater 25, 675–688 (2018). https://doi.org/10.1007/s10443-017-9645-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9645-1

Keywords

Navigation