Skip to main content
Log in

Relationship Between Hysteresis Dissipated Energy and Temperature Rising in Fiber-Reinforced Ceramic-Matrix Composites Under Cyclic Loading

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this paper, the relationship between hysteresis dissipated energy and temperature rising of the external surface in fiber-reinforced ceramic-matrix composites (CMCs) during the application of cyclic loading has been analyzed. The temperature rise, which is caused by frictional slip of fibers within the composite, is related to the hysteresis dissipated energy. Based on the fatigue hysteresis theories considering fibers failure, the hysteresis dissipated energy and a hysteresis dissipated energy-based damage parameter changing with the increase of cycle number have been investigated. The relationship between the hysteresis dissipated energy, a hysteresis dissipated energy-based damage parameter and a temperature rise-based damage parameter have been established. The experimental temperature rise-based damage parameter of unidirectional, cross-ply and 2D woven CMCs corresponding to different fatigue peak stresses and cycle numbers have been predicted. It was found that the temperature rise-based parameter can be used to monitor the fatigue damage evolution and predict the fatigue life of fiber-reinforced CMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos. Sci. Technol. 64, 155–170 (2004). doi:10.1016/S0266-3538(03)00230-6

    Article  Google Scholar 

  2. Schmidt, S., Beyer, S., Knabe, H., Immich, H., Meistring, R., Gessler, A.: Advanced ceramic matrix composite materials for current and future propulsion system applications. Acta Astronaut. 55, 409–420 (2004). doi:10.1016/j.actaastro.2004.05.052

    Article  Google Scholar 

  3. DiCarlo, J.A., van Roode, M.: Ceramic composite development for gas turbine hot section components. Proc. ASME Turbo Expo. Power Land Sea Air. 2, 221–231 (2006)

    Google Scholar 

  4. Stephen, T.: General Electric primes CMC for turbine blades. Flight International. http://www.flightglobal.com/news/articles/general-electric-primes-cmc-for-turbine-blades-349834/ (2010)

  5. Mall, S., Engesser, J.M.: Effects of frequency on fatigue behavior of CVI C/SiC at elevated temperature. Compos. Sci. Technol. 66, 863–874 (2006). doi:10.1016/j.compscitech.2005.06.020

    Article  Google Scholar 

  6. Holmes, J.W., Shuler, S.F.: Temperature rise during fatigue of fiber-reinforced ceramics. J. Mater. Sci. Lett. 9, 1290 (1990). doi:10.1007/BF00726522

    Article  Google Scholar 

  7. Cho, C.D., Holmes, J.W., Barber, J.R.: Estimation of interfacial shear in ceramic composites from frictional heating measurements. J. Am. Ceram. Soc. 74, 2802–2808 (1991). doi:10.1111/j.1151-2916.1991.tb06846.x

    Article  Google Scholar 

  8. Kim, J., Liaw, P.K.: Characterization of fatigue damage modes in nicalon/calcium aluminosilicate composites. J. Eng. Mater. Technol. 127, 8–15 (2005). doi:10.1115/1.1836766

    Article  Google Scholar 

  9. Liu, C.D., Cheng, L.F., Luan, X.G., Lin, B., Zhou, J.: Damage evolution and real-time non-destructive evaluation of 2D carbon-fiber/SiC-matrix composites under fatigue loading. Mater. Lett. 62, 3922–924 (2008). doi:10.1016/j.matlet.2008.04.063

    Article  Google Scholar 

  10. Daniel, I.M., Lee, J.W.: The behavior of ceramic matrix fiber composites under longitudinal loading. Compos. Sci. Technol. 46, 105–113 (1993). doi:10.1016/0266-3538(93)90166-E

    Article  Google Scholar 

  11. Aveston, J., Cooper, G.A., Kelly, A.: Single and multiple fracture. Properties of fiber composites. In: Conference on proceedings, National Physical Laboratory, pp. 15–26. IPC, UK (1971)

  12. Zok, F.W., Spearing, S.M.: Matrix crack spacing in brittle matrix composites. Acta Metall. Mater. 40, 2033–2043 (1992). doi:10.1016/0956-7151(92)90189-L

    Article  Google Scholar 

  13. Zhu, H., Weitsman, Y.: The progression of failure mechanisms in unidirectional reinforced ceramic composites. J. Mech. Phys. Solids. 42, 1601–1632 (1994). doi:10.1016/0022-5096(94)90089-2

    Article  Google Scholar 

  14. Solti, J.P., Mall, S., Robertson, D.D.: Modeling damage in unidirectional ceramic-matrix composites. Compos. Sci. Technol. 54, 55–66 (1995). doi:10.1016/0266-3538(95)00041-0

    Article  Google Scholar 

  15. Curtin, W.A.: Multiple matrix cracking in brittle matrix composites. Acta Metall. Mater. 41, 1369–1377 (1993). doi:10.1016/0956-7151(93)90246-O

    Article  Google Scholar 

  16. Hsueh, C.H.: Crack-wake interface debonding criterion for fiber-reinforced ceramic composites. Acta Mater. 44, 2211–2216 (1996). doi:10.1016/1359-6454(95)00369-X

    Article  Google Scholar 

  17. Gao, Y., Mai, Y., Cotterell, B.: Fracture of fiber-reinforced materials. J. Appl. Math. Phys. 39, 550–572 (1988). doi:10.1007/BF00948962

    Article  Google Scholar 

  18. Sun, Y.J., Singh, R.N.: The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite. Acta Mater. 46, 1657–1667 (1998). doi:10.1016/S1359-6454(97)00347-9

    Article  Google Scholar 

  19. Evans, A.G., Zok, F.W., McMeeking, R.M.: Fatigue of ceramic matrix composites. Acta Metall. Mater. 43, 859–875 (1995). doi:10.1016/0956-7151(94)00304-Z

    Article  Google Scholar 

  20. Rouby, D., Reynaud, P.: Fatigue behavior related to interface modification during load cycling in ceramic-matrix fiber composites. Compos. Sci. Technol. 48, 109–118 (1993). doi:10.1016/0266-3538(93)90126-2

    Article  Google Scholar 

  21. Fantozzi, G., Reynaud, P., Rouby, D.: Thermomechanical behavior of long fibers ceramc-ceramic composites. Silic. Ind. 66, 109–119 (2001)

    Google Scholar 

  22. Li, L.B.: Micromechanical modeling of fatigue hysteresis behavior in carbon fiber-reinforced ceramic-matrix composites. Part I: theoretical analysis. Compos. Part B Eng. (2014). doi:10.1016/j.compositesb.2014.09.036

    Google Scholar 

  23. Solti, J.P., Mall, S., Robertson, D.D.: Modeling of fatigue in cross-ply ceramic matrix composites. J. Compos. Mater. 31, 1921–1943 (1997). doi:10.1177/002199839703101903

    Article  Google Scholar 

  24. Li, L.B.: Fatigue hysteresis behavior of cross-ply C/SiC ceramic matrix composites at room and elevated temperatures. Mater. Sci. Eng. A 586, 160–170 (2013). doi:10.1016/j.msea.2013.08.017

    Article  Google Scholar 

  25. Curtin, W.A.: Theory of mechanical properties of ceramic-matrix composites. J. Am. Ceram. Soc. 74, 2837–2845 (1991). doi:10.1111/j.1151-2916.1991.tb06852.x

    Article  Google Scholar 

  26. Lee, S.S., Stinchcomb, W.W.: Damage mechanisms of cross-ply nicalon/CAS-II laminate under cyclic tension. Ceram. Eng. Sci. Proc. 15, 40–48 (1994). doi:10.1002/9780470314500.ch5

    Article  Google Scholar 

  27. Holmes, J.W., Wu, X., Sorensen, B.F.: Frequency dependence of fatigue life and internal heating of a fiber-reinforced/ceramic-matrix composite. J. Am. Ceram. Soc. 77, 3284–86 (1994). doi:10.1111/j.1151-2916.1994.tb04587.x

    Article  Google Scholar 

  28. Shuler, S.F., Holmes, J.W., Wu, X.: Influence of loading frequency on the room-temperature fatigue of a carbon-fiber/sic-matrix composite. J. Am. Ceram. Soc. 76, 2327–36 (1993). doi:10.1111/j.1151-2916.1993.tb07772.x

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the Science and Technology Department of Jiangsu Province for the funding that made this research study possible

Funding

This study has received the support from the Science and Technology Department of Jiangsu Province through the Natural Science Fund of Jiangsu Province (Grant No. BK20140813).

Conflict of Interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Longbiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longbiao, L. Relationship Between Hysteresis Dissipated Energy and Temperature Rising in Fiber-Reinforced Ceramic-Matrix Composites Under Cyclic Loading. Appl Compos Mater 23, 337–355 (2016). https://doi.org/10.1007/s10443-015-9463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-015-9463-2

Keywords

Navigation