Skip to main content
Log in

Modeling the Effect of Oxidation on Tensile Strength of Carbon Fiber−Reinforced Ceramic−Matrix Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

An analytical method has been developed to investigate the effect of oxidation on the tensile strength of carbon fiber − reinforced ceramic − matrix composites (CMCs). The Budiansky − Hutchinson − Evans shear − lag model was used to describe the micro stress field of the damaged composite considering fibers failure. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The fiber strength degradation model and oxidation region propagation model have been adopted to analyze the oxidation effect on tensile strength of the composite, which is controlled by diffusion of oxygen gas through matrix cracks. Under tensile loading, the fibers failure probabilities were determined by combining oxidation model and fiber statistical failure model based on the assumption that fiber strength is subjected to two-parameter Weibull distribution and the loads carried by broken and intact fibers statisfy the global load sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength considering oxidation time and temperature have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos. Sci. Technol. 64, 155–170 (2004). doi:10.1016/S0266-3538(03)00230-6

    Article  Google Scholar 

  2. Naslain, R., Guette, A., Rebillat, F., Gallet, S.L., Lamouroux, F., Filipuzzi, L., Louchet, C.: Oxidation mechanisms and kinetics of SiC-matrix composites and their constituents. J. Mater. Sci. 39, 7303–7316 (2004). doi:10.1023/B:JMSC.0000048745.18938.d5

    Article  Google Scholar 

  3. Lamouroux, F., Camus, G., Thebault, J.: Kinetics and mechanisms of oxidation of 2D woven C/SiC composites: I, experimental approach. J. Am. Ceram. Soc. 77, 2049–2057 (1994). doi:10.1111/j.1151-2916.1994.tb07096.x

    Article  Google Scholar 

  4. Lamouroux, F., Naslain, R., Jouin, J.-M.: Kinetics and mechanisms of oxidation of 2D woven C/SiC composites: II, theoretical approach. J. Am. Ceram. Soc. 77, 2058–2068 (1994). doi:10.1111/j.1151-2916.1994.tb07097.x

    Article  Google Scholar 

  5. Halbig, M.C., McGuffin-Cawley, J.D., Eckel, A.J., Brewer, D.N.: Oxidation kinetics and stress effects for the oxidation of continuous carbon fibers within a microcracked C/SiC ceramic matrix composite. J. Am. Ceram. Soc. 91, 519–526 (2008). doi:10.1111/j.1551-2916.2007.02170.x

    Article  Google Scholar 

  6. Halbig, M.C., Brewer, D.N., Eckel, A.J.: Degradation of continuous fiber ceramic matrix composites under constant-load conditions. NASA/TM − 2000 − 209681 (2000).

  7. Halbig, M.C., Cawley, J.D.: Modeling the environmental effects on carbon fibers in a ceramic matrix at oxidizing conditions. NASA/TM − 2000 − 210223 (2000).

  8. Halbig, M.C.: The oxidation kinetics of continuous carbon fibers in a cracked ceramic matrix composite. NASA/TM − 2001 − 210520 (2001).

  9. Mei, H., Cheng, L.F., Zhang, L.T., Xu, Y.D.: Modeling the effects of thermal and mechanical load cycling on a C/SiC composite in oxygen/argon mixtures. Carbon 45, 2195–2204 (2007). doi:10.1016/j.carbon.2007.06.051

    Article  Google Scholar 

  10. Lara-Curzio, E.: Analysis of oxidation-assisted stress-rupture of continuous fiber-reinforced ceramic matrix composites at intermediate temperatures. Compos. Part A 30, 549–554 (1999). doi:10.1016/S1359-835X(98)00148-1

    Article  Google Scholar 

  11. Casas, L., Martinez-Esnaola, J.M.: Modelling the effect of oxidation on the creep behavior of fiber-reinforced ceramic matrix composites. Acta Mater. 51, 3745–3757 (2003). doi:10.1016/S1359-6454(03)00189-7

    Article  Google Scholar 

  12. Budiansky, B., Hutchinson, J.W., Evans, A.G.: Matrix fracture in fiber-reinforced ceramics. J. Mech. Phys. Solids. 34, 167–189 (1986)

    Article  Google Scholar 

  13. Daniel, I.M., Lee, J.W.: The behavior of ceramic matrix fiber composites under longitudinal loading. Compos. Sci. Technol. 46, 105–113 (1993). doi:10.1016/0266-3538(93)90166-E

    Article  Google Scholar 

  14. Aveston, J., Cooper, G.A., Kelly, A.: Single and multiple fracture. Properties of fiber composites: conference on proceedings. England: National Physical Laboratory, IPC. 15–26 (1971).

  15. Zok, F.W., Spearing, S.M.: Matrix crack spacing in brittle matrix composites. Acta Metall. Mater. 40, 2033–2043 (1992). doi:10.1016/0956-7151(92)90189-L

    Article  Google Scholar 

  16. Zhu, H., Weitsman, Y.: The progression of failure mechanisms in unidirectional reinforced ceramic composites. J. Mech. Phys. Solids. 42, 1601–1632 (1994). doi:10.1016/0022-5096(94)90089-2

    Article  Google Scholar 

  17. Solti, J.P., Mall, S., Robertson, D.D.: Modeling damage in unidirectional ceramic-matrix composites. Compos. Sci. Technol. 54, 55–66 (1995). doi:10.1016/0266-3538(95)00041-0

    Article  Google Scholar 

  18. Curtin, W.A.: Multiple matrix cracking in brittle matrix composites. Acta Metall. Mater. 41, 1369–1377 (1993). doi:10.1016/0956-7151(93)90246-O

    Article  Google Scholar 

  19. Hsueh, C.H.: Crack-wake interface debonding criterion for fiber-reinforced ceramic composites. Acta Mater. 44, 2211–2216 (1996). doi:10.1016/1359-6454(95)00369-X

    Article  Google Scholar 

  20. Gao, Y., Mai, Y., Cotterell, B.: Fracture of fiber-reinforced materials. J. Appl. Math. Phys. 39, 550–572 (1988). doi:10.1007/BF00948962

    Article  Google Scholar 

  21. Sun, Y.J., Singh, R.N.: The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite. Acta Mater. 46, 1657–1667 (1998). doi:10.1016/S1359-6454(97)00347-9

    Article  Google Scholar 

  22. Filipuzzi, L., Naslain, R.: Oxidation mechanisms and kinetics of 1D-SiC/C/SiC composite materials: II. Modelling. J. Am. Ceram. Soc. 77, 467–480 (1994). doi:10.1111/j.1151-2916.1994.tb07016.x

    Article  Google Scholar 

  23. Casas, L., Martinez-Esnaola, J.M.: Modelling the effect of oxidation on the creep behaviour of fiber-reinforced ceramic matrix composites. Acta Mater. 51, 3745–3757 (2003). doi:10.1016/S1359-6454(03)00189-7

    Article  Google Scholar 

  24. Thouless, M.D., Evans, A.G.: Effects of pull-out on the mechanical properties of ceramic matrix composites. Acta Metall. Mater. 36, 517–522 (1988). doi:10.1016/0001-6160(88)90083-1

    Article  Google Scholar 

  25. Cao, H.C., Thouless, M.D.: Tensile tests of ceramic-matrix composites: theory and experiment. J. Am. Ceram. Soc. 73, 2091–2094 (1990). doi:10.1111/j.1151-2916.1990.tb05273.x

    Article  Google Scholar 

  26. Sutcu, M.: Weibull statistics applied to fiber failure in ceramic composites and work of fracture. Acta Metall. Mater. 37, 651–661 (1989). doi:10.1016/0001-6160(89)90249-6

    Article  Google Scholar 

  27. Schwietert, H.R., Steif, P.S.: A theory for the ultimate strength of a brittle-matrix composite. J. Mech. Phys. Solids. 38, 325–343 (1990). doi:10.1016/0022-5096(90)90002-L

    Article  Google Scholar 

  28. Curtin, W.A.: Theory of mechanical properties of ceramic-matrix composites. J. Am. Ceram. Soc. 74, 2837–2845 (1991). doi:10.1111/j.1151-2916.1991.tb06852.x

    Article  Google Scholar 

  29. Weitsman, Y., Zhu, H.: Multiple-fracture of ceramic composites. J. Mech. Phys. Solids. 41, 351–388 (1993). doi:10.1016/0022-5096(93)90012-5

    Article  Google Scholar 

  30. Hild, F., Domergue, J.M., Leckie, F.A., Evans, A.G.: Tensile and flexural ultimate strength of fiber-reinforced ceramic-matrix composites. Int. J. Solids. Strut. 31, 1035–1045 (1994). doi:10.1016/0020-7683(94)90010-8

    Article  Google Scholar 

  31. Zhu, H., Weitsman, Y.: The progression of failure mechanisms in unidirectional reinforced ceramic composites. J. Mech. Phys. Solids. 42, 1601–1632 (1994). doi:10.1016/0022-5096(94)90089-2

    Article  Google Scholar 

  32. Curtin, W.A., Ahn, B.K., Takeda, N.: Modeling brittle and tough stress–strain behavior in unidirectional ceramic matrix composites. Acta Mater. 46, 3409–3420 (1998). doi:10.1016/S1359-6454(98)00041-X

    Article  Google Scholar 

  33. Paar, R., Valles, J.-L., Danzer, R.: Influence of fiber properties on the mechanical behavior of unidirectionally-reinforced ceramic matrix composites. Mat. Sci. Eng. A 250, 209–216 (1998). doi:10.1016/S0921-5093(98)00593-0

    Article  Google Scholar 

  34. Liao, K., Reifsnider, K.L.: A tensile strength model for unidirectional fiber-reinforced brittle matrix composite. Int. J. Fracture 106, 95–115 (2000). doi:10.1023/A:1007645817753

    Article  Google Scholar 

  35. Zhou, S.J., Curtin, W.A.: Failure of fiber composites: a lattice green function model. Acta Metall. Mater. 43, 3093–3104 (1995). doi:10.1016/0956-7151(95)00003-E

    Article  Google Scholar 

  36. Dutton, R.E., Pagano, N.J., Kim, R.Y.: Modeling the ultimate tensile strength of unidirectional glass-matrix composites. J. Am. Ceram. Soc. 83, 166–174 (2000). doi:10.1111/j.1151-2916.2000.tb01166.x

    Article  Google Scholar 

  37. Xia, Z., Curtin, W.A.: Toughness-to-brittle transitions in ceramic-matrix composites with increasing interfacial shear stress. Acta Mater. 48, 4879–4892 (2000). doi:10.1016/S1359-6454(00)00291-3

    Article  Google Scholar 

  38. Phoenix, S.L., Raj, R.: Scalings in fracture probabilities for a brittle matrix fiber composite. Acta Metall. Mater. 40, 2813–2828 (1992). doi:10.1016/0956-7151(92)90447-M

    Article  Google Scholar 

  39. Wang, Z.J.: Research on mechanical properties of ceramic matrix composites in oxidation environment. Master thesis of Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)

  40. Li, L.B., Song, Y.D., Sun, Y.C.: Modeling the tensile behvior of unidirectional C/SiC ceramic-matrix composites. Mech. Compos. Mater. 49, 659–672 (2014). doi:10.1007/s11029-013-9382-y

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the Science and Technology Department of Jiangsu Province for the funding that made this research study possible

Compliance with Ethical Standards

Funding

This study has received the support from the Science and Technology Department of Jiangsu Province through the Natural Science Foundation of Jiangsu Province (Grant No. BK20140813).

Conflict of Interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Longbiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longbiao, L. Modeling the Effect of Oxidation on Tensile Strength of Carbon Fiber−Reinforced Ceramic−Matrix Composites. Appl Compos Mater 22, 921–943 (2015). https://doi.org/10.1007/s10443-015-9443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-015-9443-6

Keywords

Navigation