Skip to main content
Log in

Carbon Nanotube Based Sensor to Monitor Crack Growth in Cracked Aluminum Structures Underneath Composite Patching

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The paper investigates a carbon nanotube-based sensor to detect crack propagation in aluminum structures underneath composite patching. Initial tests are conducted to determine the correct procedure and materials to properly fabricate a carbon nanotube (CNT) based sensor, which is then placed in between a composite patch and the aluminum structure. The CNTs have been utilized as sensors in previous studies but only for sensing crack propagation within the composite itself. This study focuses on crack propagation in the base material and is not concerned with the composite. In this application, the composite is only a patch and can be replaced if damaged. The study conducts both tension and fatigue testing to determine the usefulness of the CNT sensor. The CNT sensor is shown to be effective in giving an indication of the crack propagation in the aluminum. Correlation is done between the crack propagation length and the increase in electrical resistance in the CNT sensor under tensile and cyclic loading, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schwarting, R., Ebel, G., Dorsch, T.: “Manufacturing techniques and process challenges with CG47 class ship aluminum superstructures modernization and repairs,” in In Fleet Maintenance and Modernization Symposium 2001: Assessing Current and Future Maintenance Strategies, San Diego, (2011)

  2. Needham, B., Field, A.: “Sensitization of 5000 Series Al Alloys,” in Naval Surface Warfare Center Carderock Division, Corrosion and Engineering Branch, Mega Rust Report, San Diego, (2007)

  3. Mouritz, A., Gellert, E., Burchill, P., Challis, K.: Review of adcvance composite structures for naval ships and submarines. Compos. Struct. 53, 21–44 (2001)

    Article  Google Scholar 

  4. Calister, W.D.: “Carbon nanotubes,” in materials and engineering an introduction, p. 471. Wiley, New York (2010)

    Google Scholar 

  5. Ahwahnee: “Technical Report: How to Use Multi-Walled Carbon Nanotubes,” Ahwahnee Technology Inc, San Jose, (2005)

  6. Gojiny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B., Schulte, K.: Carbon nanotube-reinforced epoxy-compo sites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64, 2363–2371 (2004)

    Article  Google Scholar 

  7. Saito,R., Dresselhaus, G.: “Physical Properties of Carbon Nanotubes,” World Scientific, pp. 11–12, 224–225, (1998)

  8. Bily, M.A., Kwon, Y.W., Pollak, R.D.: Study of composite interface fracture and crack growth monitoring using carbon nanotubes. Appl. Compos. Mater. 17(4), 347–362 (2010)

    Article  Google Scholar 

  9. Faulkner, S.D., Kwon, Y.W., Bartlett, S., Rasmussen, E.A.: Study of composite joint strength with carbon nanotube reinforcement. J. Mater. Sci. 44(11), 2858–2864 (2009)

    Article  Google Scholar 

  10. Gao, L., Thostenson, E.T., Zhang, Z., Byun, J., Chou, T.: Damage monitoring fiber-reinforced composites under fatigue loading using carbon nanotube networks. Phils. Mag. 90, 4085–4099 (2010)

    Article  Google Scholar 

  11. Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Kinloch, I.A., Bauhofer, W., Windle, A.H., Schulte, K.: Evaluation and identification of electrical and thermal conduction mechanisms in carbon nonotube/epoxy composites. Polymer 47, 2036–2045 (2006)

    Article  Google Scholar 

  12. Thostenson, E.T., Chou, T.: Real-time in situ sensing of damage evolution in advance fiber composites using carbon nanotube networks. Nanotechnology 19, 215–713 (2008)

    Article  Google Scholar 

  13. Thostenson, E.T., Chou, T.: Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44, 3022–3029 (2006)

    Article  Google Scholar 

  14. Rosca, I.D., Hoa, S.V.: Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling. Carbon 47, 1958–1968 (2009)

    Article  Google Scholar 

  15. Thostenson, E.T., Chou, T.: Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing. Adv. Mater. 18(21), 2837–2841 (2006)

    Article  Google Scholar 

  16. Thostenson, E.T., Ziaee, S., Chou, T.: Processing and electrical properties of carbon nanotube/vinly ester nanocomposites. Compos. Sci. Technol. 69, 801–804 (2009)

    Article  Google Scholar 

  17. Sandler, J., Shaffer, M., Prasse, T., Bauhofer, W., Schulte, K., Windle, A.: Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40, 5967–5971 (1999)

    Article  Google Scholar 

  18. Zhang, W., Sakalkar, V., Koratkar, N.: In situ health monitoring and repair in composites using carbon nanotube additives. Appl. Phys. Lett. 91(13), 133102 (2007)

    Article  Google Scholar 

  19. Li, C., Thostenson, E.T., Chou, T.: Sensors and actuators based on carbon nanotubes and their composites: a review. Compos. Sci. Technol. 68, 1227–1249 (2008)

    Article  Google Scholar 

  20. Mahar, B., Laslau, C., Yip, R., Sun, Y.: Development of carbon nanotube-based sensor—a review. IEEE Sensors J. 7, 266–284 (2007)

    Article  Google Scholar 

  21. Nofar, M., Hoa, S.V., Pugh, M.D.: Failure detection and monitoring in polymer matrix composites subject to static and dynamic loads using carbon nanotube networks. Compos. Sci. Technol. 69, 1599–1606 (2009)

    Article  Google Scholar 

  22. Pro-Set Inc: Technical data, M1002 resin/237 hardener toughened laminating epoxy. Pro-Set Inc., Bay City (2005)

    Google Scholar 

  23. Instron Corporation: Test Method Development Manual, Norwood, MA: Instron Corporation, (2004)

  24. MTS Systems Corporation: Model 793.00 System Software, Eden Prairie, MN: MTS Systems Corporation, (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. W. Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olson, T.M., Kwon, Y.W., Hart, D.C. et al. Carbon Nanotube Based Sensor to Monitor Crack Growth in Cracked Aluminum Structures Underneath Composite Patching. Appl Compos Mater 22, 457–473 (2015). https://doi.org/10.1007/s10443-014-9417-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-014-9417-0

Keywords

Navigation