Skip to main content
Log in

Permeability Tests of Fiber Fabrics in the Vacuum Assisted Resin Transfer Molding Process

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A special device is designed to measure the in-plane and through-thickness permeability of a preform for the vacuum assisted resin transfer molding (VARTM) process. The device is composed of pressure control module, aluminum experimental platform, thickness test module, and pressure test module, which is controlled by a computer. Two kinds of experiments were conducted for carbon fiber noncrimp biaxial fabrics to verify the reliability of the new device based on constant pressure injection. The two experiments are composed of: (1) testing of in-plane permeability for 1, 5, 10 and 20 layers with the method of the line injection by comparing the two conventional methods; (2) testing of the through-thickness permeability for the laminate denoted as [±45] 20 with the central injection method. The results show: (1) the in-plane permeability decrease with the increase of layer number and the permeability for 20 layers is only 62 % of the one layer; (2) the in-plane permeability is an order of magnitude greater than through-thickness permeability based on experimental results of laminate denoted as [±45] 20. A good agreement obtained between the device and two comparison methods proves the validity of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adams, K.L., Miller, B., Rebenfeld, L.: Polymer Engineering and Science 26, 1434–1437 (1986)

    Article  Google Scholar 

  2. Parnas, R.S.: Liquid composite molding. Munchen, Carl Hanser Verlag (2000)

    Book  Google Scholar 

  3. Adams, K.L., Rebenfeld, L.: Textile Research Journal 57, 647–650 (1987)

    Article  Google Scholar 

  4. Summerscales, J., Searle, T.J.: Proc. Inst. Mech. Eng. Part L. J. Mat. Des. Appl. 219, 45–58 (2005)

    Google Scholar 

  5. Gebart BR, J. Compos. Mater. 26, 1100–33 (1992)

  6. Cai, Z.: Polymer Composites 3, 251–257 (1993)

    Google Scholar 

  7. Baichen, L., Bickerton, S., Advani, S.G.: Composites: Part A 27(135–41) (1996)

  8. Gauvin, R.: Polymer Composites 17, 34–42 (1996)

    Article  Google Scholar 

  9. Comas-Cardona, S., Cosson, B., Bickerton, S., et al.: Composites: Part A 57, 41–48 (2014)

    Article  Google Scholar 

  10. Sung Hoon A, Woo II L, Springer GS, J. Compos. Mat., 29: 714–733 (1995)

  11. Luo, Y., Verpoest, I., Hoes, K., Vanheule, M., Sol, H., Cardon, A.: Composites: Part A 32, 1497–1504 (2001)

    Article  Google Scholar 

  12. Parnas, R.S., Flynn, K.M., Dal-Favero, M.E.: Polymer Composites 18, 623–633 (1997)

    Article  Google Scholar 

  13. Liu, H.L., Hwang, W.R.: Composites: Part A 43, 2030–2038 (2012)

    Article  Google Scholar 

  14. Carter, E.J., Fell, A.W., Griffin, P.R., Summerscales, J.: Composites: Part A 27, 255–261 (2002)

    Article  Google Scholar 

  15. Drapier, S., Pagot, A., Vautrin, A., Henrat, P.: Composites Science and Technology 62, 1979–1991 (2002)

    Article  Google Scholar 

  16. Babu BZ, Pillai KM, J. Compos. Mater., 38, 57–79 (2004)

  17. Endruweit, A., McGregor, P., Long, A.C., et al.: Composites Science and Technology 66, 1778–1792 (2006)

    Article  Google Scholar 

  18. Mathur, R.: Polymer Composites 22, 477–90 (2001)

    Article  Google Scholar 

  19. Arbter, R., Beraud, J.M., Binetruy, C., et al.: Composites: Part A 42, 1157–1168 (2011)

    Article  Google Scholar 

  20. Vernet, N., Ruiz, E., Advani, S., et al.: Composites: Part A 61, 172–184 (2014)

    Article  Google Scholar 

  21. Hoes, K., Dinescu, D., Vanheule, M.: Composites: Part A 33, 959–969 (2002)

    Article  Google Scholar 

  22. Markicevic, B.: Composites: Part A 36, 851–858 (2005)

    Article  Google Scholar 

  23. Gan, J.M., Bickerton, S.: Battley M, Composites Part A 43(1169–1176) (2012)

  24. Zhang F, Comas-Cardona S, and Binetruy C, Compos. Sci. Technol.,71, 1368–1379 (2012).

  25. Pamas, R.S., Salem, A.J., Sadiq, T.A.K., Wang, H.P., Advani, S.G.: Composite Structures 27, 93–107 (1994)

    Article  Google Scholar 

  26. Sadiq, T.A.K., Advani, S.G., Parnas, R.S.: International Journal of Multiphase Flow 21, 25–34 (1995)

    Article  Google Scholar 

  27. Ahn SH, Lee WI, Springer GS, J. Compos. Mater., 29, 714–733 (1995)

  28. Ballata, W.O., Walsh, S.M., Reinf, J.: Journal of Reinforced Plastics and Composites 18, 1450–1464 (1999)

    Google Scholar 

  29. S. Drapier. J. Monatte, O. Elbouazzaoui, Composites Part A, 36, 877–892 (2002).

  30. Lim, S.T., Lee, W.I.: Compos Science and Technology 60, 961–975 (2000)

    Article  Google Scholar 

  31. Zhang Zuoguang, Li Min, Gu Yizhuo et al., CN 101051019A (2007)

  32. Li, M., Wang, S.: Compos Science and Technology 72(873–875) (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Changchun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Changchun, W., Guanghui, B., Yang, W. et al. Permeability Tests of Fiber Fabrics in the Vacuum Assisted Resin Transfer Molding Process. Appl Compos Mater 22, 363–375 (2015). https://doi.org/10.1007/s10443-014-9412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-014-9412-5

Keywords

Navigation