Skip to main content
Log in

Threshold Dynamics for Diffusive Age-Structured Model over Unbounded Domains: Age-Dependent Death and Diffusion Rates

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

The global dynamics of the typical age-structured model with age-dependent mortality and diffusion rates on unbounded domains have been established. On the one hand, we showed that a positive and constant state solution of the mature population is globally asymptotically stable with respect to the compact-open topology; on the other hand, we showed that the trivial solution is globally asymptotically stable with respect to the usual supremum norm. As an application of our result, we applied the result to birth functions appearing in biology. In addition to the theoretical results, we also present a numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Al-Jararha, M.: Global attractivity in a non-monotone age-structured model with age-dependent diffusion and death rates. Adv. Differ. Equ. (2018). https://doi.org/10.1186/s13662-018-1884-4

    Article  MathSciNet  Google Scholar 

  2. Al-Jararha, M., Ou, C.: Populations dynamics with age-dependent diffusion and death rates. Eur. J. Appl. Math. 24, 471–500 (2013). https://doi.org/10.1017/S0956792513000028

    Article  MathSciNet  Google Scholar 

  3. Boulanouar, M.: A model of proliferating cell population with infinite cell cycle length: asymptotic behavior. Acta Appl. Math. 110, 1105–1126 (2010). https://doi.org/10.1007/s10440-008-9355-7

    Article  MathSciNet  Google Scholar 

  4. Calvez, V., Pierre, G., Álvaro, M.G.: Limiting Hamilton–Jacobi equation for the large scale asymptotics of a subdiffusion jump-renewal equation. Asymptot. Anal. 115(1–2), 63–94 (2019). https://doi.org/10.3233/ASY-191528

    Article  MathSciNet  Google Scholar 

  5. Dungundji, J.: Topology. Allyn & Bacon, Boston (1966)

    Google Scholar 

  6. Gourley, S.A., So, J.W.-H., Wu, J.: Non-locality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics. J. Math. Sci. 124(4), 5119–5153 (2004). https://doi.org/10.1023/B:JOTH.0000047249.39572.6d

    Article  MathSciNet  Google Scholar 

  7. Hsu, S.-B., Zhao, X.-Q.: Spreading speeds and traveling waves for nonmonotone integrodifference equations. SIAM J. Math. Anal. 40, 776–789 (2008). https://doi.org/10.1137/07070301

    Article  MathSciNet  Google Scholar 

  8. Huang, M., Wu, S.-L., Zhao, X.-Q.: Propagation dynamics for time-space periodic and partially degenerate reaction-diffusion systems with time delay. J. Dyn. Differ. Equ. (2023). https://doi.org/10.1007/s10884-023-10299-7

    Article  Google Scholar 

  9. Liu, Z., Guo, C., Li, H.: Steady states analysis of a nonlinear age-structured tumor cell population model quiescence and bidirectional transitions. Acta Appl. Math. 169, 455–474 (2020). https://doi.org/10.1007/s10440-019-00306-9

    Article  MathSciNet  Google Scholar 

  10. Mei, M., So, J.W.-H.: Stability of strong traveling waves for non-local time-delayed reaction diffusion equation. Proc. R. Soc. Edinb., Sect. A, Math. 138(3), 551–568 (2008). https://doi.org/10.1017/S0308210506000333

    Article  Google Scholar 

  11. Metz, J.A.J., Diekmann, O.: The Dynamics of Physiologically Structured Populations. Springer, Berlin (1986)

    Book  Google Scholar 

  12. Michel, P.: General relative entropy in a nonlinear McKendrick model. In: Stochastic Analysis and Partial Differential Equations. Contemp. Math., vol. 429, pp. 205–232. Am. Math. Soc., Providence (2007)

    Chapter  Google Scholar 

  13. Michel, P., Mischler, S., Perthame, B.: General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. 84, 1235–1260 (2005). https://doi.org/10.1016/j.matpur.2005.04.001

    Article  MathSciNet  Google Scholar 

  14. Miyoshi, N., Oubrahim, H., Chok, P.B., Stadtman, E.R.: Age-dependent cell mortality and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proc. Natl. Acad. Sci. USA 103(6), 1727–1731 (2007). https://doi.org/10.1073/pnas.0510346103

    Article  Google Scholar 

  15. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Math Surveys and Monographs, vol. 41. Am. Math. Soc., Providence (1995)

    Google Scholar 

  16. Smith, H., Thieme, H.: Strongly order preserving semiflows generated by functional differential equations. J. Differ. Equ. 93, 332–363 (1991). https://doi.org/10.1016/0022-0396(91)90016-3

    Article  MathSciNet  Google Scholar 

  17. Smith, H., Thieme, H.: Dynamical Systems and Population Persistence. Graduate Studies in Mathematics, vol. 118. Am. Math. Soc., Providence (2011)

    Google Scholar 

  18. So, J.W.-H., Wu, J., Zou, X.: A reaction-diffusion model for a single species with age-structured. I traveling wavefronts on unbounded domains. Proc. R. Soc. Lond. A 457, 1841–1853 (2001). https://doi.org/10.1098/rspa.2001.0789

    Article  Google Scholar 

  19. Thieme, H.R.: Density-dependent regulation of spatially distributed populations and their asymptotics speed of spread. J. Math. Biol. 195, 173–187 (2003). https://doi.org/10.1007/BF00279720

    Article  MathSciNet  Google Scholar 

  20. Thieme, H.R., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion model. J. Differ. Equ. 195, 430–470 (2003). https://doi.org/10.1016/S0022-0396(03)00175-X

    Article  MathSciNet  Google Scholar 

  21. Wang, H., Ou, C.: Propagation speed of the bistable traveling wave to the Lotka-Volterra competition system in a periodic habitat. J. Nonlinear Sci. (2020). https://doi.org/10.1007/s00332-020-09646-5

    Article  MathSciNet  Google Scholar 

  22. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Applied Math. Sci., vol. 119. Springer, New Yourk (1996)

    Google Scholar 

  23. Xu, D., Zhao, X.-Q.: A nonlocal reaction-diffusion population model with stage structure. Can. Appl. Math. Q. 11(3), 303–319 (2003)

    MathSciNet  Google Scholar 

  24. Yi, T., Zou, X.: Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary conditions: a non-monotone case. J. Differ. Equ. 245, 3376–3388 (2008). https://doi.org/10.1016/j.jde.2008.03.007

    Article  MathSciNet  Google Scholar 

  25. Yi, T., Chen, Y., Wu, J.: Global dynamics of delayed reaction-diffusion equations in unbounded domains. Z. Angew. Math. Phys. 63, 793–812 (2012). https://doi.org/10.1007/s00033-012-0224-x

    Article  MathSciNet  Google Scholar 

  26. Yuan, Y., Chen, H.: Global dynamics of a nonlocal population model with stage structure in an unbounded domain. Appl. Anal. 98(4), 799–809 (2017). https://doi.org/10.1080/00036811.2017.1403587

    Article  MathSciNet  Google Scholar 

  27. Zhao, X.-Q.: Dynamical Systems in Population Biology. Springer, New York (2003)

    Book  Google Scholar 

  28. Zhao, X.-Q.: Global attractivity in a class of nonmonotone reaction-diffusion equations with time delay. Can. Appl. Math. Q. 17(1), 271–281 (2009)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor and the referees for their valuable comments which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadkheer AlJararha.

Ethics declarations

Competing Interests

The author declares none.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlJararha, M. Threshold Dynamics for Diffusive Age-Structured Model over Unbounded Domains: Age-Dependent Death and Diffusion Rates. Acta Appl Math 190, 6 (2024). https://doi.org/10.1007/s10440-024-00643-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-024-00643-4

Keywords

Mathematics Subject Classification

Navigation