Skip to main content
Log in

An Attraction-Repulsion Chemotaxis System: The Roles of Nonlinear Diffusion and Productions

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This article considers the no-flux attraction-repulsion chemotaxis model

$$ \left \{ \textstyle\begin{array}{l} \begin{aligned} &u_{t} = \nabla \cdot \big((u+1)^{m_{1}-1}\nabla u-\chi u(u+1)^{m_{2}-2} \nabla v+\xi u(u+1)^{m_{3}-2}\nabla w\big),& x\in \Omega ,\ t>0&, \\ & 0=\Delta v+f(u)-\beta v, & x\in \Omega ,\ t>0&, \\ & 0=\Delta w+g(u)-\delta w, & x\in \Omega ,\ t>0& \end{aligned} \end{array}\displaystyle \right . $$

defined in a smooth and bounded domain \(\Omega \subset \mathbb{R}^{n}\) (\(n\ge 2\)) with \(m_{1},m_{2},m_{3}\in \mathbb{R}\), \(\chi ,\xi ,\beta ,\delta >0\). The functions \(f(u)\), \(g(u)\) extend the prototypes \(f(u)=\alpha u^{s}\) and \(g(u)=\gamma u^{r}\) with \(\alpha ,\gamma >0\) and suitable \(s,r>0\) for all \(u\ge 0\). Our main result exhibits that there exists \(M^{*}>0\) such that for all properly regular initial data, the studied model admits a unique classical solution which remains bounded if \(m_{2}+s< m_{3}+r\) or \(m_{2}+s=m_{3}+r\) and \(\frac{\xi \gamma }{\chi \alpha }>M^{*}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, L.J.S., Bolker, B.M., Lou, Y., Nevai, A.L.: Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin. Dyn. Syst. 21(1), 1–20 (2008)

    Article  MathSciNet  Google Scholar 

  2. Chiyo, Y., Yokota, T.: Boundedness in a fully parabolic attraction-repulsion chemotaxis system with nonlinear diffusion and signal-dependent sensitivity. Nonlinear Anal., Real World Appl. 66, 103533 (2022)

    Article  MathSciNet  Google Scholar 

  3. Chiyo, Y., Yokota, T.: Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system. Z. Angew. Math. Phys. 73(2), 61 (2022)

    Article  MathSciNet  Google Scholar 

  4. Chiyo, Y., Yokota, T.: Remarks on finite-time blow-up in a fully parabolic attraction-repulsion chemotaxis system via reduction to the Keller–Segel system. arXiv:2103.02241 [math.AP]. https://doi.org/10.48550/arXiv.2103.02241

  5. Cieślak, T.: Quasilinear nonuniformly parabolic system modelling chemotaxis. J. Math. Anal. Appl. 326(2), 1410–1426 (2007)

    Article  MathSciNet  Google Scholar 

  6. Eisenbach, M.: Chemotaxis. Imperial College Press, London (2004)

    Book  Google Scholar 

  7. Frassu, S., Li, T., Viglialoro, G.: Improvements and generalizations of results concerning attraction-repulsion chemotaxis models. Math. Methods Appl. Sci. 45(17), 11067–11078 (2022)

    Article  MathSciNet  Google Scholar 

  8. Frassu, S., van der Mee, C., Viglialoro, G.: Boundedness in a nonlinear attraction-repulsion Keller–Segel system with production and consumption. J. Math. Anal. Appl. 504(2), 125428 (2021)

    Article  MathSciNet  Google Scholar 

  9. Fujie, K., Ito, A., Yokota, T.: Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain–Anderson type. Adv. Math. Sci. Appl. 24(1), 67–84 (2014)

    MathSciNet  Google Scholar 

  10. Fujie, K., Winkler, M., Yokota, T.: Blow-up prevention by logistic sources in a parabolic-elliptic Keller–Segel system with singular sensitivity. Nonlinear Anal. 109, 56–71 (2014)

    Article  MathSciNet  Google Scholar 

  11. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215(1), 52–107 (2005)

    Article  MathSciNet  Google Scholar 

  12. Jiao, Z., Jadlovská, I., Li, T.: Finite-time blow-up and boundedness in a quasilinear attraction-repulsion chemotaxis system with nonlinear signal productions. Nonlinear Anal., Real World Appl. 77, 104023 (2024)

    Article  MathSciNet  Google Scholar 

  13. Jin, H.-Y., Wang, Z.-A.: Global stabilization of the full attraction-repulsion Keller–Segel system. Discrete Contin. Dyn. Syst. 40(6), 3509–3527 (2020)

    Article  MathSciNet  Google Scholar 

  14. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  15. Lankeit, J.: Finite-time blow-up in the three-dimensional fully parabolic attraction-dominated attraction-repulsion chemotaxis system. J. Math. Anal. Appl. 504(2), 125409 (2021)

    Article  MathSciNet  Google Scholar 

  16. Li, T., Frassu, S., Viglialoro, G.: Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption. Z. Angew. Math. Phys. 74(3), 109 (2023)

    Article  MathSciNet  Google Scholar 

  17. Li, Y., Lin, K., Mu, C.: Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system. Electron. J. Differ. Equ. 2015, 146 (2015)

    MathSciNet  Google Scholar 

  18. Lin, K., Mu, C.: Global existence and convergence to steady states for an attraction-repulsion chemotaxis system. Nonlinear Anal., Real World Appl. 31, 630–642 (2016)

    Article  MathSciNet  Google Scholar 

  19. Lin, K., Mu, C., Gao, Y.: Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion. J. Differ. Equ. 261(8), 4524–4572 (2016)

    Article  MathSciNet  Google Scholar 

  20. Lin, K., Mu, C., Wang, L.: Large-time behavior of an attraction-repulsion chemotaxis system. J. Math. Anal. Appl. 426(1), 105–124 (2015)

    Article  MathSciNet  Google Scholar 

  21. Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogilner, A.: Chemotactic signaling, microglia, and Alzheimer’s disease senile plaques: is there a connection? Bull. Math. Biol. 65(4), 693–730 (2003)

    Article  Google Scholar 

  22. Painter, K.J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10(4), 501–543 (2002)

    MathSciNet  Google Scholar 

  23. Tao, Y., Wang, Z.-A.: Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci. 23(01), 1–36 (2013)

    Article  MathSciNet  Google Scholar 

  24. Tao, Y., Winkler, M.: A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal. 43(2), 685–704 (2011)

    Article  MathSciNet  Google Scholar 

  25. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252(1), 692–715 (2012)

    Article  MathSciNet  Google Scholar 

  26. Viglialoro, G.: Influence of nonlinear production on the global solvability of an attraction-repulsion chemotaxis system. Math. Nachr. 294(12), 2441–2454 (2021)

    Article  MathSciNet  Google Scholar 

  27. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248(12), 2889–2905 (2010)

    Article  MathSciNet  Google Scholar 

  28. Winkler, M.: Global classical solvability and generic infinite-time blow-up in quasilinear Keller–Segel systems with bounded sensitivities. J. Differ. Equ. 266(12), 8034–8066 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the editors and two anonymous referees for the careful reading of the original manuscript and useful comments that helped to improve the presentation of the results and accentuate important details.

Funding

This research is supported by NNSF of P. R. China (Grant No. 61503171), CPSF (Grant No. 2015M582091), NSF of Shandong Province (Grant No. ZR2016JL021), and the Operational Programme Integrated Infrastructure (OPII) for the project 313011BWH2: “InoCHF–Research and development in the field of innovative technologies in the management of patients with CHF”, co-financed by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongxing Li.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Z., Jadlovská, I. & Li, T. An Attraction-Repulsion Chemotaxis System: The Roles of Nonlinear Diffusion and Productions. Acta Appl Math 190, 5 (2024). https://doi.org/10.1007/s10440-024-00641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-024-00641-6

Keywords

Mathematics Subject Classification

Navigation