Skip to main content
Log in

On the Motion of Rigid Bodies in Viscoelastic Fluids

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper is concerned with the two dimensional motion of a finite number of homogeneous rigid disks in a cavity filled with incompressible viscoelastic fluids which obey constitutive laws of differential type. We focus here on two types of differential constitutive laws which are commonly used to describe the flow of dilute solutions of polymeric liquids: the first one corresponds to the regularized Oldroyd model whereas the other one corresponds to the Oldroyd model. The movement of rigid bodies modifies the fluid domain and hence we are dealing with a free boundary problem. By using fixed point theorem, we prove the existence and uniqueness of local-in-time strong solutions of the considered moving-boundary problem for both models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu, V.: Partial Differential Equations and Boundary Value Problems, vol. 441. Springer, Berlin (2013)

    Google Scholar 

  2. Barrett, J., Suli, E.: Existence of global weak solutions to some regularized kinetic models for dilute polymers. Multiscale Model. Simul. 6, 506–546 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bhave, A.V., Armstrong, R.C., Brown, R.A.: Kinetic theory and rheology of dilute, nonhomogeneous polymer solutions. J. Chem. Phys. 95, 2988–3000 (1991)

    Article  Google Scholar 

  4. Bourguignon, G.P., Brezis, H.: Remarks on the Euler equations. J. Chem. Phys. 15(4), 341–363 (1976)

    MATH  Google Scholar 

  5. Boyer, F., Fabrie, P.: Eléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles, vol. 52, pp. 90–91. Springer, Berlin (2005)

    MATH  Google Scholar 

  6. Conca, C., San Martin, J., Tucsnak, M.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differ. Equ. 25, 99–110 (2000)

    Article  MathSciNet  Google Scholar 

  7. Constantin, P., Kliegl, M.: Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress. Arch. Ration. Mech. Anal. 206(3), 725–740 (2012)

    Article  MathSciNet  Google Scholar 

  8. Cumsille, P., Takahashi, T.: Well posedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslov. Math. J. 58, 961–992 (2008)

    Article  Google Scholar 

  9. Decoene, A., Martin, S., Maury, B.: Direct simulations of rigid particles in a viscoelastic fluid. Preprint

  10. Desjardins, B., Esteban, J.M.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146, 59–71 (1999)

    Article  MathSciNet  Google Scholar 

  11. Desjardins, B., Esteban, J.M.: On weak solutions for fluidrigid structure interaction: compressible and incompressible models. Commun. Partial Differ. Equ. 25, 263–285 (2000). Mathematical Physics and Related Topics I, pp. 121–144. Springer (2002)

    Article  Google Scholar 

  12. Feireisl, E., Hillairet, M., Nec̆asová, c.: On the motion of several rigid bodies in an incompressible non-Newtonian fluid. Nonlinearity 21(6), 1349 (2008)

    Article  MathSciNet  Google Scholar 

  13. Geissert, M., Götze, K., Hieber, M.: \(L^{p}\) theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids. Trans. Am. Math. Soc. 365, 1393–1439 (2013)

    Article  Google Scholar 

  14. Glass, O., Sueur, F.: Uniqueness results for weak solutions of two-dimensional fluid–solid systems. Arch. Ration. Mech. Anal. 218, 907–944 (2015)

    Article  MathSciNet  Google Scholar 

  15. Götze, K.: Strong solutions for the interaction of a rigid body and a viscoelastic fluid. J. Math. Fluid Mech. 15 663–688 (2013)

    Article  MathSciNet  Google Scholar 

  16. Guillopé, C., Saut, J.C.: Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15 849–869 (1990)

    Article  MathSciNet  Google Scholar 

  17. Gunzburger, D.M., Lee, H.-C., Seregin, A.G.: Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2, 219–266 (2000)

    Article  MathSciNet  Google Scholar 

  18. Inoue, A., Wakimoto, M.: On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci., Univ. Tokyo, Sect. IA, Math. 24, 303–319 (1977)

    MathSciNet  MATH  Google Scholar 

  19. Judakov, N.: The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid. Din. Sploš. Sredy 255, 249–253 (1974)

    MathSciNet  Google Scholar 

  20. Lions, P.L., Masmoudi, N.: Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math., Ser. B 21(2), 131–146 (2000)

    Article  MathSciNet  Google Scholar 

  21. Molinet, L., Talhouk, R.: On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law. Nonlinear Differ. Equ. Appl. 11(3), 349–359 (2004)

    Article  MathSciNet  Google Scholar 

  22. San Martín, J.A., Starovoitov,V., Tucsnak,M.: Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Rot. Mech. Anal. 161, 113–147 (2002)

    Article  MathSciNet  Google Scholar 

  23. Serre, D.: Chute libre d’un solide dans un fluide visqueux incompressible. Existence. Jpn. J. Appl. Math. 4, 99–110 (1987)

    Article  MathSciNet  Google Scholar 

  24. Silvestre, A.: On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions. J. Math. Fluid Mech. 4, 285–326 (2002)

    Article  MathSciNet  Google Scholar 

  25. Takahashi, T.: Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8, 1499–1532 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Takahashi, T., Tucsnak, M.: Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6, 53–77 (2004)

    Article  MathSciNet  Google Scholar 

  27. Temam, R.: Problèmes mathématiques en plasticité. Gauthier-Villars, Paris (1983)

    MATH  Google Scholar 

  28. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis, vol. 343, pp. 33–35. Am. Math. Soc., Providence (2001)

    MATH  Google Scholar 

Download references

Acknowledgement

The author would like to take the opportunity to thank her supervisors Professor Matthieu Hillairet and Professor Raafat Talhouk for proposing this subject of study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamis Sabbagh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was completed while the author was doing her thesis between the Montpelliérain Alexander Grothendieck Institute, CNRS, University of Montpellier, France and the Laboratory of Mathematics, Ecole Doctoral Sciences and Technologies (EDST), Lebanese University, Lebanon. This work was supported by Azm and Saadeh association and by IFSMACS project (grant number ANR-15-CE40-0010).

Appendix: Technical Details on the Change of Variables \(X\) and \(Y\)

Appendix: Technical Details on the Change of Variables \(X\) and \(Y\)

In this appendix, we recall the transform \(X\) and some easily verified properties of \(X\) and its inverse mapping \(Y\). To this end, we fix \(k\) functions \(h_{i}: t\mapsto h_{i}(t)\) such that for \(i\in \{1,\ldots ,k\}\), we assume that \(h_{i}\in {H^{2}(0,T;\mathbb{R}^{2})}\). Moreover, we define a family of regular cut-off function \(\{\psi _{i}\}_{i=1}^{k}\) such that each has a compact support contained in \(B(h_{i}(0),r_{i}+\frac{\gamma _{0}}{2})\) and equal 1 in a neighbourhood \(V_{B_{i}}\) of \(i\)-th disk contained in \(B(h_{i}(0),r_{i}+\frac{\gamma _{0}}{2})\), where \(r_{i}\) denotes the radius of the \(i\)-th disk. Furthermore, we define the mapping \(\Lambda : \mathbb{R}^{2}\times [0,T] \rightarrow \mathbb{R}^{2}\) by

$$ \Lambda (x,t)=\sum _{i=1}^{k}\nabla ^{\bot }(h'_{i}(t)\cdot x^{\bot }\psi _{i}(x)). $$
(A.1)

The mapping \(X\) is defined as a solution of the following Cauchy problem:

$$ \textstyle\begin{cases} \displaystyle {\frac{\partial X}{\partial t}}(y,t)&=\Lambda (X(y,t),t), \:\:t\in ]0,T], \\ X(y,0)&=y \in \mathbb{R}^{2}. \end{cases} $$
(A.2)

For all \(y\in \mathbb{R}^{2}\), the initial-value problem (A.2) admits a unique solution \(X(y,.): [0,T]\rightarrow \mathbb{R}^{2}\), which is \(\mathcal{C}^{1}\) on \([0,T]\). Moreover, the mapping \(X(.,t)\) is a \(\mathcal{C}^{\infty }\)-diffeomorphism from \(\mathcal{O}\) into itself and from \(B_{i}\) onto \(B_{i}(t)\) whenever \(B_{i}(t)\subset V_{B_{i}}\). Furthermore, the inverse mapping \(Y\) of \(X\) satisfies

$$ \textstyle\begin{cases} \displaystyle {\frac{\partial Y}{\partial t}}(x,s)&=-\Lambda (Y(x,s),t-s), \:\:t\in ]0,T], \\ Y(x,0)&=x \in \mathbb{R}^{2}. \end{cases} $$
(A.3)

From the definition of \(\Lambda \) in (A.1), one can check that for all \(t\) such that \(B_{i}(t)\subset V_{B_{i}}\) we have

$$\begin{aligned} Y(x,t)= x-h_{i}(t)+h_{i}(0), \hspace{0.4cm} &\text{if}\:x\in \partial B_{i}(t), \end{aligned}$$
(A.4)
$$\begin{aligned} Y(x,t)=0, \hspace{0.4cm} &\text{if}\:x\in \partial \mathcal{O}. \end{aligned}$$
(A.5)

Moreover, we have

$$\begin{aligned} \frac{d Y}{dt}(x,t)= -h'_{i}(t), \hspace{0.4cm} &\text{if}\:x\in \partial B_{i}(t), \end{aligned}$$
(A.6)
$$\begin{aligned} \frac{d Y}{dt}(x,t)=0, \hspace{0.4cm} &\text{if}\:x\in \partial \mathcal{O}. \end{aligned}$$
(A.7)

First, we recall that for \(T>0\),

K = { ( W , Q , T , ( h i , ω i ) i = 1 , , k ) U ( 0 , T ; Ω F ) × L 2 ( 0 , T ; H ˙ 1 ( Ω F ) ) × T ( 0 , T ; Ω F ) × ( H 2 ( 0 , T ; R 2 ) × H 1 ( 0 , T ; R ) ) k : W U ( 0 , T ; Ω F ) + Q L 2 ( 0 , T ; H ˙ 1 ( Ω F ) ) + i = 1 k h i ′′ L 2 ( 0 , T ; R 2 ) + ω i L 2 ( 0 , T ; R ) + T T ( 0 , T ; Ω F ) R } .

The following lemma allows us to bound the coefficients of the operators in the source terms in the linearized problem corresponding to problem (1.14)-(1.24). We refer the reader to [25] for a similar proof.

Lemma A.1

Suppose that \((W,Q,\mathcal{T},(h_{i},\omega _{i})_{i=1,\ldots ,k})\in {\mathcal{K}}\), then there exists two constants \(N_{K}\) and \(N_{C}\) satisfying conditions (i) and (ii) respectively (see Sect2), such that

$$\begin{aligned} \displaystyle \Big\Vert \frac{\partial X}{\partial y}\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq N_{K},\: \displaystyle \Big\Vert \frac{\partial ^{i+j} X}{\partial y_{1}^{i}\partial y_{2}^{j}} \Big\Vert _{{L^{\infty }([0,T]\times \mathcal{O})}}\leq N_{K}T,\: & 1< i+j \leq 3, \\ \displaystyle \Big\Vert \frac{\partial Y}{\partial x}\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq N_{K},\: \displaystyle \Big\Vert \frac{\partial ^{i+j} Y}{\partial x_{1}^{i}\partial x_{2}^{j}} \Big\Vert _{{L^{\infty }([0,T]\times \mathcal{O})}}\leq N_{K}T, \:& 1< i+j \leq 3, \\ \Big\Vert \displaystyle \frac{\partial ^{2} X_{m}}{\partial t\partial y_{\ell }}\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq N_{K},\: \Big\Vert \displaystyle \frac{\partial ^{2} Y_{m}}{\partial t\partial x_{\ell }} \Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq N_{K},\:&\ell , m, n\in \{1, 2\}, \\ \displaystyle \Big\Vert \frac{\partial X_{m}}{\partial y_{\ell }}- \delta _{m}^{\ell }\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq N_{K}T, \: \Big\Vert \displaystyle \frac{\partial Y_{m}}{\partial x_{\ell }}- \delta _{m}^{\ell }\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq N_{K}T, \:& \ell , m\in \{1, 2\}, \\ \Vert g^{m\ell }-\delta _{m}^{\ell }\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq N_{K}T,\: \Vert g_{m\ell }-\delta _{m}^{\ell }\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq N_{K}T,\:&\ell , m\in \{1, 2\}. \end{aligned}$$

By using Cauchy-Schwartz inequality and mean value theorem, one can easily check the following.

Lemma A.2

Suppose that \((W^{1},Q^{1},\mathcal{T}^{1},(h^{1}_{i},\omega ^{1}_{i})_{i=1, \ldots ,k})\) and \((W^{2},Q^{2},\mathcal{T}^{2},(h^{2}_{i},\omega ^{2}_{i})_{i=1, \ldots ,k})\) in \(\mathcal{K}\), and let \(Y^{i},X^{i}, \Gamma ^{ik}_{j,\ell }\), etc. the terms corresponding to \((W^{i},Q^{i},\mathcal{T}^{i},(h^{i}_{j},\omega ^{i}_{j})_{j=1, \ldots ,k})\). Then there exists a constant \(N_{K}\) satisfying condition (i) (see Sect2), such that the functions \(h_{i}=h_{i}^{1}-h_{i}^{2},\:X=X^{1}-X^{2}\), and \(Y=Y^{1}-Y^{2}\) satisfy the following inequalities:

$$\begin{aligned} \Vert h'_{\ell }\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq N_{K}T^{1/2} \sum _{i=1}^{k}\Vert h_{i}\Vert _{L^{2}(0,T;\mathbb{R}^{2})}, \: 1 \leq \ell \leq k, \\ \displaystyle \Big\Vert \frac{\partial ^{m+n} X}{\partial y_{1}^{m}\partial y_{2}^{n}} \Big\Vert _{{L^{\infty }([0,T]\times \mathcal{O})}}\leq N_{K}T^{1/2} \sum _{i=1}^{k}\Vert h_{i}\Vert _{L^{2}(0,T;\mathbb{R}^{2})},\: 0 \leq m+n\leq 3, \\ \displaystyle \Big\Vert \frac{\partial ^{m+n} Y}{\partial x_{1}^{m}\partial x_{2}^{n}} \Big\Vert _{{L^{\infty }([0,T]\times \mathcal{O})}}\leq N_{K}T^{1/2} \sum _{i=1}^{k}\Vert h_{i}\Vert _{L^{2}(0,T;\mathbb{R}^{2})}, \: 0 \leq m+n\leq 3, \\ \Big\Vert \displaystyle \frac{\partial ^{2} X_{m}}{\partial t\partial y_{n}}\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq N_{K}T^{1/2}\sum _{i=1}^{k} \Vert h_{i}\Vert _{L^{2}(0,T;\mathbb{R}^{2})}, \: m, n\in \{1, 2\} \\ \Big\Vert \displaystyle \frac{\partial ^{2} Y_{m}}{\partial t\partial x_{n}}\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq N_{K}T^{1/2}\sum _{i=1}^{k} \Vert h_{i}\Vert _{L^{2}(0,T;\mathbb{R}^{2})},\: m, n\in \{1, 2\}. \end{aligned}$$

Next, we recall that

K ˜ = { ( W , Q , T , ( h i , ω i ) i = 1 , , k ) S ˜ ( 0 , T , Ω F ) : W U ˜ ( 0 , T ; Ω F ) + T L ( 0 , T ; H 2 ( Ω F ) ) + Q L 2 ( 0 , T ; H 2 ( Ω F ) ) + Q L ( 0 , T ; L 2 ( Ω F ) ) + t Q L 2 ( [ 0 , T ] ; H Γ 1 ( Ω F ) ) + i = 1 k h i ′′ L ( [ 0 , T ] × R 2 ) + ω i L ( [ 0 , T ] × R ) R , T L ( 0 , T ; H 1 ( Ω F ) ) R } .

The following lemma is essential to prove that the source term \(F_{0}\) defined in (2.3) is in the good space to apply Proposition 3.1. We refer the reader again to [25] for a similar proof.

Lemma A.3

Suppose that \((W,Q,\mathcal{T},(h_{i},\omega _{i})_{i=1,\ldots ,k})\in \tilde{\mathcal{K}}\) and let \(\Lambda , X\), and \(Y\) be the terms corresponding to \((W,Q,\mathcal{T},(h_{i},\omega _{i})_{i=1,\ldots ,k})\in \tilde{\mathcal{K}}\). Then there exists a constant \(K_{0}\) satisfying (i) and a constant \(C_{0}\) satisfying (ii) (see Sect3) such that

$$\begin{aligned} \Vert h'_{\ell }\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq C_{0}+K_{0}T, \: \Big\Vert \displaystyle \frac{\partial ^{i+j}\Lambda }{\partial x_{1}^{i}\partial x_{2}^{j}} \Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq C_{0}+K_{0}T,\: &0 \leq i+j\leq 4, \\ &1\leq \ell \leq k, \\ \displaystyle \Big\Vert \frac{\partial X}{\partial y}\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0},\: \displaystyle \Big\Vert \frac{\partial ^{i+j} X}{\partial y_{1}^{i}\partial y_{2}^{j}} \Big\Vert _{{L^{\infty }([0,T]\times \mathcal{O})}}\leq K_{0}T,\: & 1< i+j \leq 4, \\ \displaystyle \Big\Vert \frac{\partial Y}{\partial x}\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0},\: \displaystyle \Big\Vert \frac{\partial ^{i+j} Y}{\partial x_{1}^{i}\partial x_{2}^{j}} \Big\Vert _{{L^{\infty }([0,T]\times \mathcal{O})}}\leq K_{0}T, \:& 1< i+j \leq 4, \\ \Big\Vert \displaystyle \frac{\partial ^{2} X_{m}}{\partial t\partial y_{\ell }}\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0},\: \Big\Vert \displaystyle \frac{\partial ^{3} X_{m}}{\partial t\partial y_{\ell }\partial y_{n}} \Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0},\:&\ell , m, n\in \{1, 2\}, \\ \Big\Vert \displaystyle \frac{\partial ^{2} Y_{m}}{\partial t\partial x_{\ell }}\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0},\: \Big\Vert \displaystyle \frac{\partial ^{3} Y_{m}}{\partial t\partial x_{\ell }\partial x_{n}} \Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0},\:&\ell , m, n\in \{1, 2\}, \\ \Big\Vert \displaystyle \frac{\partial ^{2} X}{\partial t^{2}} \Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0},\: \Big\Vert \displaystyle \frac{\partial ^{2} Y}{\partial t^{2}} \Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0},\:& \\ \displaystyle \Big\Vert \frac{\partial X_{m}}{\partial y_{\ell }}- \delta _{m}^{\ell }\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0}T, \: \Big\Vert \displaystyle \frac{\partial Y_{m}}{\partial x_{\ell }}- \delta _{m}^{\ell }\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0}T, \:& \ell , m\in \{1, 2\}. \end{aligned}$$

We recall that the functions \(g^{ij},\:g_{i,j}\) and \(\Gamma _{i,j}^{k}\) are defined as follows:

$$ g^{ij}=\sum _{k=1}^{2}\frac{\partial Y_{i}}{\partial x_{k}} \frac{\partial Y_{j}}{\partial x_{k}},\:\: g_{ij}=\sum _{k=1}^{2} \frac{\partial X_{k}}{\partial y_{i}} \frac{\partial X_{k}}{\partial y_{j}}, \:\: \Gamma ^{k}_{i,j}= \frac{1}{2}\sum _{\ell =1}^{2}g^{k\ell }\left \lbrace \frac{\partial g_{i\ell }}{\partial y_{j}}+ \frac{\partial g_{j\ell }}{\partial y_{i}}- \frac{\partial g_{ij}}{\partial y_{\ell }}\right \rbrace . $$

By noting that \(g^{ij}(0)=g_{ij}(0)=\delta ^{i}_{j}\) and using mean-value theorem, we get

$$ \Vert g^{ij}-\delta ^{i}_{j}\Vert _{L^{\infty }([0,T]\times \mathcal{O})} \leq K_{0}T,\:\Vert g_{ij}-\delta _{j}^{i}\Vert _{L^{\infty }([0,T] \times \mathcal{O})}\leq K_{0}T,\:\forall i,j\in \{1, 2\} $$
(A.8)

Moreover, we get the following as a direct consequence of Lemma A.3.

Corollary A.1

There exists a constant \(K_{0}\) satisfying (i) (see Sect3) such that

$$\begin{aligned} \Vert g^{ij}\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0}, \Vert \Gamma ^{i}_{j,k}\Vert _{L^{\infty }([0,T]\times \mathcal{O})} \leq K_{0}T, \\ \Big\Vert \frac{\partial g^{ij}}{\partial y_{\ell }}\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0}T, \Big\Vert \displaystyle \frac{\partial \Gamma ^{i}_{j,k}}{\partial y_{\ell }} \Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0}T, \\ \Big\Vert \frac{\partial ^{2} g^{ij}}{\partial y_{\ell }\partial y_{m}} \Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0}T, \Big\Vert \displaystyle \frac{\partial ^{2}\Gamma ^{i}_{j,k}}{\partial y_{\ell }\partial y_{m}} \Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0}T. \\ \Big\Vert \frac{\partial g^{jk}}{\partial t}\Big\Vert _{L^{\infty }([0,T] \times \mathcal{O})}\leq K_{0},\: \Big\Vert \displaystyle \frac{\partial \Gamma ^{i}_{j,k}}{\partial t}\Big\Vert _{L^{\infty }([0,T] \times \mathcal{O})}\leq K_{0}, \\ \Big\Vert \frac{\partial ^{2} g^{jk}}{\partial t\partial y_{k}} \Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0},\: \Big\Vert \displaystyle \frac{\partial ^{2}\Gamma ^{i}_{j,k}}{\partial t\partial y_{\ell }} \Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})}\leq K_{0}. \end{aligned}$$

We move now to derive some estimates which will be helpful in bounding the terms in the right hand side of (3.36) and (3.37) in terms of the terms in the left hand side of each one of them.

For \((W^{n},Q^{n},\mathcal{T}^{n},(h^{n}_{i},\omega ^{n}_{i})_{i=1, \ldots ,k})\) and \((W,Q,\mathcal{T},(h_{i},\omega _{i})_{i=1,\ldots ,k})\in \tilde{\mathcal{K}}\), we denote by \(X^{n}, Y^{n},g^{ij,n}, \Gamma ^{k,n}_{i,j},\ldots \) the terms corresponding to \((W^{n},Q^{n},\mathcal{T}^{n},(h^{n}_{i},\omega ^{n}_{i})_{i=1, \ldots ,k})\) and by \(X, Y, g^{ij}, \Gamma ^{k}_{i,j},\ldots \) the terms corresponding to \((W,Q,\mathcal{T},(h_{i},\omega _{i})_{i=1,\ldots ,k})\).

It is important to note that the transforms \(X\) and \(X^{n}\) satisfy the estimates in Lemma A.3 independent of \(n\). We denote by \(\bar{X}^{n}=X-X^{n}\) and \(\bar{Y}^{n}=Y-Y^{n}\). Then using arguments identical to that given in [25] shows that \(\bar{X}^{n}\) and \(\bar{Y}^{n}\) satisfy the following.

Lemma A.4

Assume that \((W,Q,\mathcal{T},(h_{i},\omega _{i})_{i=1,\ldots ,k})\) and \((W^{n},Q^{n},\mathcal{T}^{n},(h_{i}^{n},\omega _{i}^{n})_{i=1, \ldots ,k})\in \tilde{\mathcal{K}}\), \(\forall n\geq 1\).

Then there exists a constant \(K_{0}\) satisfying (i) and a positive constant \(C\) such that

$$\begin{aligned} \displaystyle \Big\Vert \frac{\partial ^{\ell +m} \bar{X}^{n}}{\partial y_{1}^{\ell }\partial y_{2}^{m}} \Big\Vert _{{L^{\infty }([0,T]\times \mathcal{O})}} \leq K_{0}T \displaystyle \sum _{i=1}^{k}\Vert h'_{i}-(h^{n}_{i})'\Vert _{L^{\infty }([0,T]\times \mathcal{O})},\: & 0\leq \ell +m\leq 3, \\ \displaystyle \Big\Vert \frac{\partial ^{\ell +m} \bar{Y}^{n}}{\partial x_{1}^{\ell }\partial x_{2}^{m}} \Big\Vert _{{L^{\infty }([0,T]\times \mathcal{O})}} \leq K_{0}T \displaystyle \sum _{i=1}^{k}\Vert h'_{i}-(h^{n}_{i})'\Vert _{L^{\infty }([0,T]\times \mathcal{O})}, \:& 0\leq \ell +m\leq 3, \\ \Big\Vert \displaystyle \frac{\partial ^{1+\ell +m} \bar{X}^{n}}{\partial t\partial y_{1}^{\ell }\partial y_{2}^{m}} \Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})} \leq K_{0} \displaystyle \sum _{i=1}^{k}\Vert h'_{i}-(h^{n}_{i})'\Vert _{L^{\infty }([0,T]\times \mathcal{O})},\:&1\leq \ell + m\leq 3, \\ \Big\Vert \displaystyle \frac{\partial ^{1+\ell +m} \bar{Y}^{n}}{\partial t\partial x_{1}^{\ell }\partial x_{2}^{m}} \Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})} \leq K_{0} \displaystyle \sum _{i=1}^{k}\Vert h'_{i}-(h^{n}_{i})'\Vert _{L^{\infty }([0,T]\times \mathcal{O})},\:&1\leq \ell + m\leq 3. \end{aligned}$$

Finally, the following is a direct consequence of Lemma A.4.

Lemma A.5

There exists a positive constant \(K_{0}\) satisfying \((i)\) such that

$$\begin{aligned} \Vert g^{ij}(X)-g^{ij,n}(X^{n})\Vert _{L^{\infty }([0,T]\times \mathcal{O})} \leq K_{0}T\displaystyle \sum _{\ell =1}^{k}\Vert h'_{\ell }-(h^{n}_{\ell })'\Vert _{L^{\infty }([0,T]\times \mathcal{O})}, \\ \Big\Vert \frac{\partial }{\partial y_{k}}\Big(g^{ij}(X)-g^{ij,n}(X^{n}) \Big)\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})} \leq K_{0}T \displaystyle \sum _{\ell =1}^{k}\Vert h'_{\ell }-(h^{n}_{\ell })'\Vert _{L^{\infty }([0,T]\times \mathcal{O})}, \\ \big\Vert \Gamma ^{i}_{j,k}(X)-\Gamma ^{i,n}_{j,k}(X^{n})\big\Vert _{L^{\infty }([0,T]\times \mathcal{O})} \leq K_{0}T\displaystyle \sum _{ \ell =1}^{k}\Vert h'_{\ell }-(h^{n}_{\ell })'\Vert _{L^{\infty }([0,T] \times \mathcal{O})}, \\ \Big\Vert \frac{\partial }{\partial y_{k}} \Big(\Gamma ^{i}_{j,\ell }(X)- \Gamma ^{i,n}_{j,\ell }(X^{n})\Big)\Big\Vert _{L^{\infty }([0,T]\times \mathcal{O})} \leq K_{0}T\displaystyle \sum _{m=1}^{k}\Vert h'_{m}-(h^{n}_{m})' \Vert _{L^{\infty }([0,T]\times \mathcal{O})}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabbagh, L. On the Motion of Rigid Bodies in Viscoelastic Fluids. Acta Appl Math 178, 8 (2022). https://doi.org/10.1007/s10440-022-00477-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-022-00477-y

Keywords

Navigation