Skip to main content
Log in

Continuity of Global Attractors for a Suspension Bridge Equation

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Our purpose is to study the continuity of global attractors under small perturbations \(\delta ,\ \epsilon \in [0, 1]\) for a suspension bridge equation on a bounded smooth domain of \(\mathbb{R}^{n}\)

$$ u_{tt} + \Delta ^{2}\,u +\kappa \, u^{+}-(a+\delta \|\nabla \,u\|^{2}) \Delta \,u+ \textrm{g}_{\epsilon }(\|u_{t}\|)u_{t} + f (u) =0, $$

with hinged (clamped) boundary condition. Based on nonlinear semigroups and the theory of monotone operators, we prove the well-posedness of the considered problem. Then we show the existence of an absorbing set. Exponential stability and global boundedness of solutions are immediate consequences. The existence of global attractors with finite fractal dimension is achieved by the useful property of quasi-stability in the theory of infinite-dimensional dynamical systems. Finally we analysis the continuity of global attractors with respect to a pair of perturbation parameters \((\delta ,\epsilon )\) in a residual dense set and their upper semicontinuity in a complete metric space. In particular, we demonstrate an explicit control over semidistances between trajectories in the weak energy phase space in terms of the perturbation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aouadi, M.: Quasi-stability and upper semicontinuity for coupled parabolic equations with memory. Stud. Appl. Math. 145, 586–621 (2020)

    Article  MathSciNet  Google Scholar 

  2. Aouadi, M.: Global and exponential attractors for extensible thermoelastic plate with time-varying delay. J. Differ. Equ. 269, 4079–4115 (2020)

    Article  MathSciNet  Google Scholar 

  3. Aouadi, M.: Robustness of global attractors for extensible coupled suspension bridge equations with fractional damping. Appl. Math. Optim. 84, 403–435 (2021)

    Article  MathSciNet  Google Scholar 

  4. Babin, A.V., Pilyugin, S.Y.: Continuous dependence of attractors on the shape of domain. J. Math. Sci. 87, 3304–3310 (1997)

    Article  MathSciNet  Google Scholar 

  5. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics, vol. 190. Springer, New York (2010)

    Book  Google Scholar 

  6. Bocanegra-Rodríguez, L.E., Silva, M.A.J., Ma, T.F., Seminario-Huertas, P.N.: Longtime dynamics of a semilinear Lamé system. J. Dyn. Differ. Equ. (2021). https://doi.org/10.1007/s10884-021-09955-7

    Article  Google Scholar 

  7. Chueshov, I.: Introduction to the Theory of Infinite-Dimensional Dissipative Systems. Acta, Kharkov (1999) (in Russian); English translation: Acta, Kharkov (2002)

    MATH  Google Scholar 

  8. Chueshov, I., Lasiecka, I.: Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping. Mem. Am. Math. Soc., vol. 195(912) (2008), Providence

    MATH  Google Scholar 

  9. Chueshov, I., Lasiecka, I.: Attractors and long-time behavior of von Karman thermoelastic plates. Appl. Math. Optim. Equ. 58, 195–241 (2008)

    Article  MathSciNet  Google Scholar 

  10. Chueshov, I., Lasiecka, I.: Von Karman Evolution Equations. Springer Monographs in Mathematics. Springer, New York (2010)

    Book  Google Scholar 

  11. Chueshov, I., Eller, M., Lasiecka, I.: On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun. Partial Differ. Equ. 27, 1901–1951 (2002)

    Article  MathSciNet  Google Scholar 

  12. Hoang, L.T., Olson, E.J., Robinson, J.C.: On the continuity of global attractors. Proc. Am. Math. Soc. 143, 4389–4395 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kang, J.R.: Global attractor for suspension bridge equations with memory. Math. Methods Appl. Sci. 39, 762–775 (2016)

    Article  MathSciNet  Google Scholar 

  14. Lazer, A.C., McKenna, P.J.: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32, 537–578 (1990)

    Article  MathSciNet  Google Scholar 

  15. Ma, T.F., Seminario-Huertas, P.N.: Attractors for semilinear wave equations with localized damping and external forces. Commun. Pure Appl. Anal. 19, 2219–2233 (2020)

    Article  MathSciNet  Google Scholar 

  16. Ma, Q.Z., Zhong, C.K.: Existence of global attractors for the coupled system of suspension bridge equations. J. Math. Anal. Appl. 308, 365–379 (2005)

    Article  MathSciNet  Google Scholar 

  17. Ma, Q.Z., Zhong, C.K.: Existence of strong solutions and global attractors for the coupled suspension bridge equations. J. Differ. Equ. 246, 3755–3775 (2009)

    Article  MathSciNet  Google Scholar 

  18. McKenna, P.J., Ó Tuama, C.: Large torsional oscillations in suspension bridges visited again: vertical forcing creates torsional response. Am. Math. Mon. 108, 738–745 (2001)

    Article  MathSciNet  Google Scholar 

  19. Miranville, A., Zelik, S.: In: Elsevier, C., Dafermos, M., Pokorny, M. (eds.) Handbook of Differential Equations Evolutionary Equations (2008)

    MATH  Google Scholar 

  20. Park, J.Y., Kang, J.R.: Global attractors for the suspension bridge equations with non- linear damping. Q. Appl. Math. 69, 465–475 (2011)

    Article  Google Scholar 

  21. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

  22. Rammaha, M.A., Sakuntasathien, S.: Global existence and blow up of solutions to systems of nonlinear wave equations with degenerate damping and source terms. Nonlinear Anal. 72, 2658–2683 (2010)

    Article  MathSciNet  Google Scholar 

  23. Raugel, G.: Global attractors in partial differential equations. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, vol. 2, pp. 885–982. Elsevier, Amsterdam (2002)

    Google Scholar 

  24. Scott, R.: In: In the Wake of Tacoma: Suspension Bridges and the Quest for Aerodynamic Stability. ASCE Press, Reston (2001)

    Chapter  Google Scholar 

  25. Simon, J.: Compact sets in the space \(L^{p}(0, T ; B)\). Ann. Mat. Pura Appl. 148, 5–96 (1987)

    Google Scholar 

  26. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer, New York (1988)

    Book  Google Scholar 

  27. Zhao, C.X., Ma, S., Zhong, C.K.: Long-time behavior for a class of extensible beams with nonlocal weak damping and critical nonlinearity. J. Math. Phys. 61, 032701 (2020).

    Article  MathSciNet  Google Scholar 

  28. Zhao, C.X., Zhao, C.Y., Zhong, C.K.: The global attractor for a class of extensible beams with nonlocal weak damping. Discrete Contin. Dyn. Syst., Ser. B 25, 935–955 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Zhong, C.K., Ma, C.K., Sun, C.Y.: Existence of strong solutions and global attractors for the suspension bridge equations. Nonlinear Anal. 67, 442–454 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referees for their critical review and valuable comments that allowed to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Aouadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouadi, M. Continuity of Global Attractors for a Suspension Bridge Equation. Acta Appl Math 176, 16 (2021). https://doi.org/10.1007/s10440-021-00462-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-021-00462-x

Keywords

Mathematics Subject Classification (2010)

Navigation