Skip to main content
Log in

Fractional-Order Legendre Functions and Their Application to Solve Fractional Optimal Control of Systems Described by Integro-differential Equations

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we introduce a set of functions called fractional-order Legendre functions (FLFs) to obtain the numerical solution of optimal control problems subject to the linear and nonlinear fractional integro-differential equations. We consider the properties of these functions to construct the operational matrix of the fractional integration. Also, we achieved a general formulation for operational matrix of multiplication of these functions to solve the nonlinear problems for the first time. Then by using these matrices the mentioned fractional optimal control problem is reduced to a system of algebraic equations. In fact the functions of the problem are approximated by fractional-order Legendre functions with unknown coefficients in the constraint equations, performance index and conditions. Thus, a fractional optimal control problem converts to an optimization problem, which can then be solved numerically. The convergence of the method is discussed and finally, some numerical examples are presented to show the efficiency and accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kosmol, P., Pavon, M.: Lagrange approach to the optimal control of diffusions. Acta Appl. Math. 32, 101–122 (1993)

    Article  MathSciNet  Google Scholar 

  2. Ho, T.S., Rabitz, H., Turinici, T.: Critical points of the optimal quantum control landscape: a propagator approach. Acta Appl. Math. 118, 49–56 (2012)

    Article  MathSciNet  Google Scholar 

  3. Jia, W., He, X., Guo, L.: The optimal homotopy analysis method for solving linear optimal control problems. Appl. Math. Model. 45, 865–880 (2017)

    Article  MathSciNet  Google Scholar 

  4. Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54(3), 263–282 (2008)

    Article  MathSciNet  Google Scholar 

  5. Suarez, I.J., Vinagre, B.M., Chen, Y.Q.: A fractional adaptation scheme for lateral control of an AGV. J. Vib. Control 14, 1499–1511 (2008)

    Article  MathSciNet  Google Scholar 

  6. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 323–337 (2004)

    Article  MathSciNet  Google Scholar 

  7. Agrawal, O.P.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problem. J. Vib. Control 13, 1269–1281 (2007)

    Article  MathSciNet  Google Scholar 

  8. Agrawal, O.P.: A formulation and numerical scheme for fractional optimal control problems. J. Vib. Control 14, 1291–1299 (2008)

    Article  MathSciNet  Google Scholar 

  9. Kamocki, R., Majewski, M.: On the existence and continuous dependence on parameter of solutions to some fractional Dirichlet problem with application to Lagrange optimal control problem. J. Optim. Theory Appl. (2016). https://doi.org/10.1007/s10957-016-0954-6

    Article  MATH  Google Scholar 

  10. Agrawal, O.P.: Fractional optimal control of a distributed system using eigenfunctions, ASME. J. Comput. Nonlinear Dyn. 3(2), 021204 (2008). https://doi.org/10.1115/1.2833873

    Article  Google Scholar 

  11. Tricaud, C.H., Chen, Y.: An approximate method for numerically solving fractional order optimal control problems of general form. Comput. Math. Appl. 59(5), 1644–1655 (2010)

    Article  MathSciNet  Google Scholar 

  12. Ozdemir, N., Agrawal, O.P., Iskender, B.B., Karadeniz, B.: Fractional optimal control of a 2-dimensional distributed system using eigenfunctions. Nonlinear Dyn. 55(3), 251–260 (2009)

    Article  MathSciNet  Google Scholar 

  13. Povstenko, Y.: Time-fractional radial diffusion in sphere. Nonlinear Dyn. 53(1), 55–65 (2008)

    Article  MathSciNet  Google Scholar 

  14. Lotfi, A., Yousefi, S.A., Dehghan, M.: Numerical solution of a class of fractional optimal control problems via the Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule. J. Comput. Appl. Math. 250, 143–160 (2013)

    Article  MathSciNet  Google Scholar 

  15. Keshavarz, E., Ordokhani, O., Razzaghi, M.: A numerical solution for fractional optimal control problems via Bernoulli polynomials. J. Vib. Control 22(18), 3889–3903 (2016)

    Article  MathSciNet  Google Scholar 

  16. Almeida, R., Torres, D.F.M.: A discrete method to solve fractional optimal control problems. Nonlinear Dyn. 80(4), 1811–1816 (2015)

    Article  MathSciNet  Google Scholar 

  17. Sweilam, N.H., Alajmi, T.M.: Legendre spectral collocation method for solving some type of fractional optimal control problem. J. Adv. Res. 6, 393–403 (2015)

    Article  Google Scholar 

  18. Rabiei, K., Ordokhani, Y., Babolian, E.: The Boubaker polynomials and their application to solve fractional optimal control problems. Nonlinear Dyn. (2016). https://doi.org/10.1007/s11071-016-3291-2

    Article  MATH  Google Scholar 

  19. Elnagar, G.: Optimal control computation integro-differential aerodynamic equations. Math. Methods Appl. Sci. 21, 653–664 (1998)

    Article  MathSciNet  Google Scholar 

  20. Mashayekhi, S., Ordokhani, Y., Razzaghi, M.: Hybrid functions approach for optimal control of systems described by integro-differential equations. Appl. Math. Model. 37, 3355–3368 (2013)

    Article  MathSciNet  Google Scholar 

  21. El-Kady, M., Moussa, H.: Monic Chebyshev approximations for solving optimal control problem with Volterra integro-differential equations. Gen. Math. Notes 14, 23–36 (2013)

    MathSciNet  Google Scholar 

  22. Maleknejad, K., Ebrahimzadeh, A.: Optimal control of Volterra integro-differential systems based on Legendre wavelets and collocation method. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 8(7), 1040–1044 (2014)

    Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  24. Kazem, S., Abbasbandy, S., Kumar, S.: Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 37(7), 5498–5510 (2013)

    Article  MathSciNet  Google Scholar 

  25. Benson, D.A.A., Meerschaert, M.M., Revielle, J.: Fractional calculus in hydrologic modeling: a numerical perspective. Adv. Water Resour. 51, 479–497 (2013)

    Article  Google Scholar 

  26. Larsson, S., Racheva, M., Saedpanah, F.: Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity. Comput. Methods Appl. Mech. Eng. 283, 196–209 (2015)

    Article  MathSciNet  Google Scholar 

  27. Shen, T., Huang, J.: Well-posedness and dynamics of stochastic fractional model for nonlinear optical fiber materials. Nonlinear Anal., Theory Methods Appl. 110, 33–46 (2014)

    Article  MathSciNet  Google Scholar 

  28. Bohannan, G.W.: Analog fractional order controller in temperature and motor control applications. J. Vib. Control 14, 1487–1498 (2008)

    Article  MathSciNet  Google Scholar 

  29. Huo, J., Zhao, H., Zhu, L.: The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal., Real World Appl. 26, 289–305 (2015)

    Article  MathSciNet  Google Scholar 

  30. Rossikhin, Y.A., Shitikova, M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50(1), 15–67 (1997)

    Article  Google Scholar 

  31. Magin, R.L.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32, 1–104 (2004)

    Article  Google Scholar 

  32. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)

    MATH  Google Scholar 

  33. Lancaster, P.: Theory of Matrices. Academic Press, New York (1969)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their helpful suggestions to improve the earlier version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Ordokhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabiei, K., Ordokhani, Y. & Babolian, E. Fractional-Order Legendre Functions and Their Application to Solve Fractional Optimal Control of Systems Described by Integro-differential Equations. Acta Appl Math 158, 87–106 (2018). https://doi.org/10.1007/s10440-018-0175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-018-0175-0

Keywords

Navigation