Skip to main content
Log in

Neonatal Achilles Tendon Microstructure is Negatively Impacted by Decorin and Biglycan Knockdown After Injury and During Development

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Interest in studying neonatal development and the improved healing response observed in neonates is increasing, with the goal of using this work to create better therapeutics for tendon injury. Decorin and biglycan are two small leucine-rich proteoglycans that play important roles in collagen fibrillogenesis to develop, maintain, and repair tendon structure. However, little is known about the roles of decorin and biglycan in early neonatal development and healing. The goal of this study was to determine the effects of decorin and biglycan knockdown on Achilles tendon structure and mechanics during neonatal development and recovery of these properties after injury of the neonatal tendon. We hypothesized that knockdown of decorin and biglycan would disrupt the neonatal tendon developmental process and produce tendons with impaired mechanical and structural properties. We found that knockdown of decorin and biglycan in an inducible, compound decorin/biglycan knockdown model, both during development and after injury, in neonatal mice produced tendons with reduced mechanical properties. Additionally, the collagen fibril microstructure resembled an immature tendon with a large population of small diameter fibrils and an absence of larger diameter fibrils. Overall, this study demonstrates the importance of decorin and biglycan in facilitating tendon growth and maturation during neonatal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. AAOS. The Diagnosis and Treatment of Achilles Tendon Rupture: Guideline and evidence report. 2009. https://doi.org/10.1016/j.injury.2014.06.022

  2. Abbah, S. A., D. Thomas, S. Browne, T. O. Brien, A. Pandit, and D. I. Zeugolis. Co-transfection of decorin and interleukin-10 modulates pro- fibrotic extracellular matrix gene expression in human tenocyte culture. Nat. Publ. Gr. 6:1–9, 2016.

    Google Scholar 

  3. Anders, H.-J., and L. Schaefer. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J. Am. Soc. Nephrol. 25:1387–1400, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ansorge, H. L., S. Adams, A. F. Jawad, D. E. Birk, and L. J. Soslowsky. Mechanical property changes during neonatal development and healing using a multiple regression model. J. Biomech. 45:1288–1292, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ansorge, H. L., S. M. Adams, D. E. Birk, and L. J. Soslowsky. Mechanical, compositional and structural properties of the post-natal mouse Achilles tendon. Ann. Biomed. Eng. 39:1904–1913, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ansorge, H. L., J. E. Hsu, L. Edelstein, S. Adams, D. E. Birk, and L. J. Soslowsky. Recapitulation of the achilles tendon mechanical properties during neonatal development: a study of differential healing during two stages of development in a mouse model. J. Orthop. Res. 30:448–456, 2012.

    Article  PubMed  Google Scholar 

  7. Babelova, A., K. Moreth, W. Tsalastra-Greul, J. Zeng-Brouwers, O. Eickelberg, M. F. Young, P. Brucker, J. Pfeilschifter, R. M. Schaefer, H. J. Gröne, and L. Schaefer. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J. Biol. Chem. 284:24035–24048, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Beach, Z. M., K. A. Bonilla, M. S. Dekhne, M. Sun, T. H. Adams, S. M. Adams, S. N. Weiss, A. B. Rodriguez, S. S. Shetye, D. E. Birk, and L. J. Soslowsky. Biglycan has a major role in maintenance of mature tendon mechanics. J. Orthop. Res. 2022. https://doi.org/10.1002/jor.25299.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beach, Z. M., M. S. Dekhne, A. B. Rodriguez, S. N. Weiss, T. H. Adams, S. M. Adams, M. Sun, D. E. Birk, and L. J. Soslowsky. Decorin knockdown is beneficial for aged tendons in the presence of biglycan expression. Matrix Biol. Plus.15:100114, 2022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bi, Y., D. Ehirchiou, T. M. Kilts, C. A. Inkson, M. C. Embree, W. Sonoyama, L. Li, A. I. Leet, B. M. Seo, L. Zhang, S. Shi, and M. F. Young. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat. Med. 13:1219–1227, 2007.

    Article  PubMed  CAS  Google Scholar 

  11. Birk, D. E., and R. L. Trelstad. Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J. Cell Biol. 103:231–240, 1986.

    Article  PubMed  CAS  Google Scholar 

  12. Birk, D. E., E. I. Zycband, S. Woodruff, D. A. Winkelmann, and R. L. Trelstad. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures. Dev. Dyn. 208:291–298, 1997.

    Article  PubMed  CAS  Google Scholar 

  13. BMUS. United States Bone and Joint Initiative: The Burden of Musculoskeletal Diseases in the United States. Rosemont, IL, 2014.

  14. Clayton, R. A. E., and C. M. Court-Brown. The epidemiology of musculoskeletal tendinous and ligamentous injuries. Injury. 39:1338–1344, 2008.

    Article  PubMed  Google Scholar 

  15. Connizzo, B. K., J. J. Sarver, D. E. Birk, L. J. Soslowsky, and R. V. Iozzo. Effect of age and proteoglycan deficiency on collagen fiber re-alignment and mechanical properties in mouse supraspinatus tendon. J. Biomech. Eng.135:021019, 2013.

    Article  PubMed  Google Scholar 

  16. Corsi, A., T. Xu, X. D. Chen, A. Boyde, J. Liang, M. Mankani, B. Sommer, R. V. Iozzo, I. Eichstetter, P. G. Robey, P. Bianco, and M. F. Young. Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J. Bone Miner. Res. 17:1180–1189, 2002.

    Article  PubMed  CAS  Google Scholar 

  17. Dourte, L. M., L. Pathmanathan, A. F. Jawad, R. V. Iozzo, M. J. Mienaltowski, D. E. Birk, and L. J. Soslowsky. Influence of decorin on the mechanical, compositional, and structural properties of the mouse patellar tendon. J. Biomech. Eng. 134:031005, 2012.

    Article  PubMed  Google Scholar 

  18. Dourte, L. M., L. Pathmanathan, M. J. Mienaltowski, A. F. Jawad, D. E. Birk, and L. J. Soslowsky. Mechanical, compositional, and structural properties of the mouse patellar tendon with changes in biglycan gene expression. J. Orthop. Res. 31:1430–1437, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Dunkman, A. A., M. R. Buckley, M. J. Mienaltowski, S. M. Adams, S. J. Thomas, A. Kumar, D. P. Beason, R. V. Iozzo, D. E. Birk, and L. J. Soslowsky. The injury response of aged tendons in the absence of biglycan and decorin. Matrix Biol. 35:232–238, 2014.

    Article  PubMed  CAS  Google Scholar 

  20. Dunkman, A. A., M. R. Buckley, M. J. Mienaltowski, S. M. Adams, S. J. Thomas, L. Satchell, A. Kumar, L. Pathmanathan, D. P. Beason, R. V. Iozzo, D. E. Birk, and L. J. Soslowsky. Decorin expression is important for age-related changes in tendon structure and mechanical properties. Matrix Biol. 32:3–13, 2013.

    Article  PubMed  CAS  Google Scholar 

  21. Dunkman, A. A., M. R. Buckley, M. J. Mienaltowski, S. M. Adams, S. J. Thomas, L. Satchell, A. Kumar, L. Pathmanathan, D. P. Beason, R. V. Iozzo, D. E. Birk, and L. J. Soslowsky. The tendon injury response is influenced by decorin and biglycan. Ann. Biomed. Eng. 42:619–630, 2014.

    Article  PubMed  Google Scholar 

  22. Harris, C. R., K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with NumPy. Nature. 585:357–362, 2020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Heinegård, D. Proteoglycans and more - from molecules to biology. Int. J. Exp. Pathol. 90:575–586, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hildebrand, A., M. Romaris, L. M. Rasmussen, D. Heinegard, D. R. Twardzik, W. A. Border, and E. Ruoslahti. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor β. Biochem. J. 302:527–534, 1994.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Howell, K., C. Chien, R. Bell, D. Laudier, S. F. Tufa, D. R. Keene, N. Andarawis-Puri, and A. H. Huang. Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing. Sci. Rep. 7:45238, 2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9:90–95, 2007.

    Article  Google Scholar 

  27. Iozzo, R. V. The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J. Biol. Chem. 274:18843–18846, 1999.

    Article  PubMed  CAS  Google Scholar 

  28. Iozzo, R. V., and L. Schaefer. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42:11–55, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kalamajski, S., A. Aspberg, K. Lindblom, D. Heinegård, and Å. Oldberg. Asporin competes with decorin for collagen binding, binds calcium and promotes osteoblast collagen mineralization. Biochem. J. 423:53–59, 2009.

    Article  PubMed  CAS  Google Scholar 

  30. Lake, S. P., K. S. Miller, D. M. Elliott, and L. J. Soslowsky. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J. Orthop. Res. 27:1596–1602, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lantto, I., J. Heikkinen, T. Flinkkilä, P. Ohtonen, and J. Leppilahti. Epidemiology of Achilles tendon ruptures: Increasing incidence over a 33-year period. Scand. J. Med. Sci. Sport. 25:e133–e138, 2015.

    Article  CAS  Google Scholar 

  32. Leiphart, R. J., H. Pham, T. Harvey, T. Komori, T. M. Kilts, S. S. Shetye, S. N. Weiss, S. M. Adams, D. E. Birk, L. J. Soslowsky, and M. F. Young. Coordinate roles for collagen VI and biglycan in regulating tendon collagen fibril structure and function. Matrix Biol. Plus.13:100099, 2022.

    Article  PubMed  CAS  Google Scholar 

  33. Leiphart, R. J., S. S. Shetye, S. N. Weiss, N. A. Dyment, and L. J. Soslowsky. Induced knockdown of decorin, alone and in tandem with biglycan knockdown, directly increases aged murine patellar tendon viscoelastic properties. J. Biomech. Eng. 142:1, 2020.

    Article  Google Scholar 

  34. Lorenzo, P., A. Aspberg, P. Önnerfjord, M. T. Bayliss, P. J. Neame, and D. Heinegård. Identification and characterization of asporin: a novel member of the leucine-rich repeat protein family closely related to decorin and biglycan. J. Biol. Chem. 276:12201–12211, 2001.

    Article  PubMed  CAS  Google Scholar 

  35. McBride, D. J., R. L. Trelstad, and F. H. Silver. Structural and mechanical assessment of developing chick tendon. Int. J. Biol. Macromol. 10:194–200, 1988.

    Article  CAS  Google Scholar 

  36. McKinney, W. Data structures for statistical computing in python. SciPy. 2010. https://doi.org/10.25080/Majora-92bf1922-00a.

    Article  Google Scholar 

  37. Miller, K. S., B. K. Connizzo, and L. J. Soslowsky. Collagen fiber re-alignment in a neonatal developmental mouse supraspinatus tendon model. Ann. Biomed. Eng. 2011. https://doi.org/10.1007/s10439-011-0490-3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Moore, M. J., and A. De Beaux. A quantitative ultrastructural study of rat tendon from birth to maturity. J. Anat. 153:163–169, 1987.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Moreth, K., R. V. Iozzo, and L. Schaefer. Small leucine-rich proteoglycans orchestrate receptor crosstalk during inflammation. Cell Cycle. 11:2084–2091, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nastase, M. V., M. F. Young, and L. Schaefer. Biglycan: a multivalent proteoglycan providing structure and signals. J. Histochem. Cytochem. 60:963–975, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Parry, D. A. D., G. R. G. Barnes, and A. S. Craig. A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc. R. Soc. Lond. Biol. Sci. 203:305–321, 1978.

    Article  CAS  Google Scholar 

  42. Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: machine learning in {P}ython. J. Mach. Learn. Res. 12:2825–2830, 2011.

    MathSciNet  Google Scholar 

  43. Peltz, C. D., S. M. Perry, C. L. Getz, and L. J. Soslowsky. Mechanical properties of the long-head of the biceps tendon are altered in the presence of rotator cuff tears in a rat model. J. Orthop. Res. 27:416–420, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rees, S. G., A. D. Waggett, B. C. Kerr, J. Probert, E. C. Gealy, C. M. Dent, B. Caterson, and C. E. Hughes. Immunolocalisation and expression of keratocan in tendon. Osteoarthr. Cartil. 17:276–279, 2009.

    Article  CAS  Google Scholar 

  45. Robinson, K. A., M. Sun, C. E. Barnum, S. N. Weiss, J. Huegel, S. S. Shetye, L. Lin, D. Saez, S. M. Adams, R. V. Iozzo, L. J. Soslowsky, and D. E. Birk. Decorin and biglycan are necessary for maintaining collagen fibril structure, fiber realignment, and mechanical properties of mature tendons. Matrix Biol. 2017. https://doi.org/10.1016/j.matbio.2017.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Robinson, P. S., T.-F. Huang, E. Kazam, R. V. Iozzo, D. E. Birk, and L. J. Soslowsky. Influence of decorin and biglycan on mechanical properties of multiple tendons in knockout mice. J. Biomech. Eng. 127:181, 2005.

    Article  PubMed  Google Scholar 

  47. Robinson, P. S., T. W. Lin, P. R. Reynolds, K. A. Derwin, R. V. Iozzo, and L. J. Soslowsky. Strain-rate sensitive mechanical properties of tendon fascicles from mice with genetically engineered alterations in collagen and decorin. J. Biomech. Eng. 126:252–257, 2004.

    Article  PubMed  Google Scholar 

  48. Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9:676–682, 2012.

    Article  PubMed  CAS  Google Scholar 

  49. Ushiku, C., D. J. Adams, X. Jiang, L. Wang, and D. W. Rowe. Long bone fracture repair in mice harboring GFP reporters for cells within the osteoblastic lineage. J. Orthop. Res. 28:1338–1347, 2010.

    Article  PubMed  CAS  Google Scholar 

  50. Zhang, G., Y. Ezura, I. Chervoneva, P. S. Robinson, D. P. Beason, E. T. Carine, L. J. Soslowsky, R. V. Iozzo, and D. E. Birk. Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development. J. Cell. Biochem. 98:1436–1449, 2006.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang, G., B. B. Young, Y. Ezura, M. Favata, L. J. Soslowsky, S. Chakravarti, and D. E. Birk. Development of tendon structure and function: regulation of collagen fibrillogenesis. J. Musculoskelet. Neuroanal Interact. 5:5–21, 2005.

    CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the NSF GRFP (DGE-1845298) and NIH/NIAMS (P30AR069619).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis J. Soslowsky.

Ethics declarations

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Additional information

Associate Editor Andreas Anayiotos oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 546 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beach, Z.M., Nuss, C.A., Weiss, S.N. et al. Neonatal Achilles Tendon Microstructure is Negatively Impacted by Decorin and Biglycan Knockdown After Injury and During Development. Ann Biomed Eng 52, 657–670 (2024). https://doi.org/10.1007/s10439-023-03414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03414-8

Keywords

Navigation