Skip to main content
Log in

Switching the Left and the Right Hearts: A Novel Bi-ventricle Mechanical Support Strategy with Spared Native Single-Ventricle

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

End-stage Fontan patients with single-ventricle (SV) circulation are often bridged-to-heart transplantation via mechanical circulatory support (MCS). Donor shortage and complexity of the SV physiology demand innovative MCS. In this paper, an out-of-the-box circulation concept, in which the left and right ventricles are switched with each other is introduced as a novel bi-ventricle MCS configuration for the “failing” Fontan patients. In the proposed configuration, the systemic circulation is maintained through a conventional mechanical ventricle assist device (VAD) while the venous circulation is delegated to the native SV. This approach spares the SV and puts it to a new use at the right-side providing the most-needed venous flow pulsatility to the failed Fontan circulation. To analyze its feasibility and performance, eight SV failure modes have been studied via an established multi-compartmental lumped parameter cardiovascular model (LPM). Here the LPM model is experimentally validated against the corresponding pulsatile mock-up flow loop measurements of a representative 15-year-old Fontan patient employing a clinically-approved VAD (Medtronic-HeartWare). The proposed surgical configuration maintained the healthy cardiac index (3–3.5 l/min/m2) and the normal mean systemic arterial pressure levels. For a failed SV with low ejection fraction (EF = 26%), representing a typical systemic Fontan failure, the proposed configuration enabled a ~ 28 mmHg amplitude in the venous/pulmonary waveforms and a 2 mmHg decrease in the central venous pressure (CVP) together with acceptable mean pulmonary artery pressures (17.5 mmHg). The pulmonary vascular resistance (PVR)—SV failure case provided a ~ 5 mmHg drop in the CVP, with venous/pulmonary pulsatility reaching to ~ 22 mmHg. For the high PVR failure case with a healthy SV (EF = 44%) pulmonary hypertension is likely to occur as expected. While this condition is routinely encountered during the heart transplantation and managed through pulmonary vasodilators a need for precise functional assessment of the spared failed-ventricle is recommended if utilized in the PVR failure mode. Comprehensive in vitro and in silico results encourage this novel concept as a low-cost, more physiological alternative to the conventional bi-ventricle MCS pending animal experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

There are no restrictions on the availability of materials or information. The compliance and resistance parameters with the datasets generated and/or analyzed during the current study are available via https://doi.org/10.5281/zenodo.6300829. For any questions, please contact corresponding authors.

Abbreviations

BiVAD:

Biventricular assist device

CA:

Common atrium

CI:

Cardiac index

CO:

Cardiac output

CPB:

Cardiopulmonary bypass

CVP:

Central venous pressure

EF:

Ejection fraction

HR:

Heart rate

LPM:

Lumped parameter model

LVAD:

Left ventricle assist device

MCS:

Mechanical circulatory support

PA:

Pulmonary artery

PVR:

Pulmonary vascular resistance

RV:

Right ventricle

RVAD:

Right ventricle assist device

SV:

Single ventricle

SVR:

Systemic vascular resistance

TCPC:

Total cavopulmonary connection

VAD:

Ventricle assist device

References

  1. Bernstein, D., D. Naftel, C. Chin, L. J. Addonizio, P. Gamberg, E. D. Blume, D. Hsu, C. E. Canter, J. K. Kirklin, W. R. Morrow, Society for Pediatric Heart Transplantation. Outcome of listing for cardiac transplantation for failed Fontan: a multi-institutional study. Circulation. 114:273–280, 2006.

    Article  CAS  PubMed  Google Scholar 

  2. Birati, E. Y., and J. E. Rame. Left ventricular assist device management and complications. Crit. Care Clin. 30:607–627, 2014.

    Article  PubMed  Google Scholar 

  3. Cardoso, B., A. Kelecsenyi, J. Smith, K. Jansen, F. De Rita, M. S. Nassar, and L. Coats. Improving outcomes for transplantation in failing Fontan—what is the next target? JTCVS Open. 8:565–573, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cilliers, A., and M. Gewillig. Fontan procedure for univentricular hearts: have changes in design improved outcome? Cardiovasc. J. S. Afr. 13:111–116, 2002.

    PubMed  Google Scholar 

  5. De Rita, F., D. Crossland, M. Griselli, and A. Hasan. Management of the failing Fontan. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 18:2–6, 2015.

    Article  PubMed  Google Scholar 

  6. De Rita, F., A. Hasan, S. Haynes, D. Crossland, R. Kirk, L. Ferguson, E. Peng, and M. Griselli. Mechanical cardiac support in children with congenital heart disease with intention to bridge to heart transplantation. Eur. J. Cardiothorac. Surg. 46:656–662, 2014.

    Article  PubMed  Google Scholar 

  7. Di Molfetta, A., A. Amodeo, L. Fresiello, S. Filippelli, M. Pilati, R. Iacobelli, R. Adorisio, D. Colella, and G. Ferrari. The use of a numerical model to simulate the cavo-pulmonary assistance in Fontan circulation: a preliminary verification. J. Artif. Organs. 19:105–113, 2016.

    Article  PubMed  Google Scholar 

  8. Di Molfetta, A., A. Amodeo, M. G. Gagliardi, M. G. Trivella, L. Fresiello, S. Filippelli, A. Toscano, and G. Ferrari. Hemodynamic effects of ventricular assist device implantation on Norwood, Glenn, and Fontan circulation: a simulation study. Artif. Organs. 40:34–42, 2016.

    Article  PubMed  Google Scholar 

  9. Doyle, M. G., M. Chugunova, S. L. Roche, and J. P. Keener. Lumped parameter models for two-ventricle and healthy and failing extracardiac Fontan circulations. Math. Med. Biol. 38:442–466, 2021.

    Article  PubMed  Google Scholar 

  10. Dur, O., M. Lara, D. Arnold, S. Vandenberghe, B. B. Keller, C. DeGroff, and K. Pekkan. Pulsatile in vitro simulation of the pediatric univentricular circulation for evaluation of cardiopulmonary assist scenarios. Artif. Organs. 33:967–976, 2009.

    Article  PubMed  Google Scholar 

  11. Durham III, L. A., J. A. Dearani, H. M. Burkhart, L. D. Joyce, F. Cetta Jr., A. K. Cabalka, S. D. Phillips, K. Sundareswaran, D. Farrar, and S. J. Park. Application of computer modeling in systemic VAD support of failing Fontan physiology. World J. Pediatr. Congenit. Heart Surg. 2:243–248, 2011.

  12. Egbe, A. C., H. M. Connolly, W. R. Miranda, N. M. Ammash, D. J. Hagler, G. R. Veldtman, and B. A. Borlaug. Hemodynamics of Fontan failure: the role of pulmonary vascular disease. Circ. Heart Fail.10(12):e004515, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Farahmand, M., M. N. Kavarana, and E. O. Kung. Risks and benefits of using a commercially available ventricular assist device for failing Fontan cavopulmonary support: a modeling investigation. IEEE Trans. Biomed. Eng. 67:213–219, 2020.

    Article  PubMed  Google Scholar 

  14. Fontan, F., and E. Baudet. Surgical repair of tricuspid atresia. Thorax. 26:240–248, 1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fukamachi, K., A. Shiose, A. L. Massiello, D. J. Horvath, L. A. Golding, S. Lee, and R. C. Starling. Implantable continuous-flow right ventricular assist device: lessons learned in the development of a Cleveland Clinic device. Ann. Thorac. Surg. 93:1746–1752, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gandolfo, F., G. Brancaccio, S. Donatiello, S. Filippelli, G. Perri, E. Iannace, D. D’Amario, G. Testa, G. D’Avenio, M. Grigioni, and A. Amodeo. Mechanically assisted total cavopulmonary connection with an axial flow pump: computational and in vivo study. Artif. Organs. 40:43–49, 2016.

    Article  PubMed  Google Scholar 

  17. Gao, S., Y. Li, X. Diao, S. Yan, G. Liu, M. Liu, Q. Zhang, W. Zhao, and B. Ji. Vacuum-assisted venous drainage in adult cardiac surgery: a propensity-matched study. Interact. Cardiovasc. Thorac. Surg. 30:236–242, 2020.

    PubMed  Google Scholar 

  18. Giridharan, G. A., S. C. Koenig, J. Kennington, M. A. Sobieski, J. Chen, S. H. Frankel, and M. D. Rodefeld. Performance evaluation of a pediatric viscous impeller pump for Fontan cavopulmonary assist. J. Thorac. Cardiovasc. Surg. 145:249–257, 2013.

    Article  PubMed  Google Scholar 

  19. Good, B. C., S. V. Ponnaluri, W. J. Weiss, and K. B. Manning. Computational modeling of the Penn State Fontan circulation assist device. ASAIO J. 68:1513–1522, 2022.

    Article  PubMed  Google Scholar 

  20. Granegger, M., M. Schweiger, M. Schmid Daners, M. Meboldt, and M. Hübler. Cavopulmonary mechanical circulatory support in Fontan patients and the need for physiologic control: a computational study with a closed-loop exercise model. Int. J. Artif. Organs. 41:261–268, 2018.

    Article  PubMed  Google Scholar 

  21. Hasegawa, M., Y. Tominaga, T. Watanabe, T. Ueno, M. Taira, and S. Miyagawa. Successful bridge to transplantation with long-term support using Berlin heart EXCOR in a child with failing Fontan. Gen. Thorac. Cardiovasc. Surg. 70:750–753, 2022.

    Article  PubMed  Google Scholar 

  22. Heidenreich, P. A., B. Bozkurt, D. Aguilar, L. A. Allen, J. J. Byun, M. M. Colvin, A. Deswal, M. H. Drazner, S. M. Dunlay, L. R. Evers, J. C. Fang, S. E. Fedson, G. C. Fonarow, S. S. Hayek, A. F. Hernandez, P. Khazanie, M. M. Kittleson, C. S. Lee, M. S. Link, C. A. Milano, L. C. Nnacheta, A. T. Sandhu, L. W. Stevenson, O. Vardeny, A. R. Vest, and C. W. Yancy. 2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 145:e876–e894, 2022.

    PubMed  Google Scholar 

  23. Hernandez, J., S. G. Chopski, S. Lee, W. B. Moskowitz, and A. L. Throckmorton. Externally applied compression therapy for Fontan patients. Transl. Pediatr. 7:14–22, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hoffman, J. I., and S. Kaplan. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39:1890–1900, 2002.

    Article  PubMed  Google Scholar 

  25. Horne, D., J. Conway, I. M. Rebeyka, and H. Buchholz. Mechanical circulatory support in univentricular hearts: current management. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 18:17–24, 2015.

    Article  PubMed  Google Scholar 

  26. Jaquiss, R. D., and H. Aziz. Is four stage management the future of univentricular hearts? Destination therapy in the young. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 19:50–54, 2016.

    Article  PubMed  Google Scholar 

  27. Karimov, J. H., K. Fukamachi, and R. C. Starling. Mechanical Support for Heart Failure: Current Solutions and New Technologies. Berlin: Springer, 2020.

    Book  Google Scholar 

  28. Koçyıldırım, E., O. Dur, O. Soran, E. Tüzün, M. W. Miller, G. J. Housler, P. D. Wearden, T. W. Fossum, V. O. Morell, and K. Pekkan. Pulsatile venous waveform quality in Fontan circulation—clinical implications, venous assists options and the future. Anadolu Kardiyol. Derg. 12:420–426, 2012.

    PubMed  Google Scholar 

  29. Kung, E., G. Pennati, F. Migliavacca, T. Y. Hsia, R. Figliola, A. Marsden, A. Giardini, and M. Investigators. A simulation protocol for exercise physiology in Fontan patients using a closed loop lumped-parameter model. J. Biomech. Eng. 136:0810071–08100714, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lammers, A. E., and T. Humpl. Use of pulmonary vasodilators in Fontan patients: a useful strategy to improve functional status and delay transplantation? Pulm. Circ. 8:2045894018798616, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lin, W. C. P., M. G. Doyle, S. L. Roche, O. Honjo, T. L. Forbes, and C. H. Amon. Computational fluid dynamic simulations of a cavopulmonary assist device for failing Fontan circulation. J. Thorac. Cardiovasc. Surg. 158:1424-1433.e1425, 2019.

    Article  PubMed  Google Scholar 

  32. McCormick, A. D., and K. R. Schumacher. Transplantation of the failing Fontan. Transl. Pediatr. 8:290–301, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moazami, N., K. Fukamachi, M. Kobayashi, N. G. Smedira, K. J. Hoercher, A. Massiello, S. Lee, D. J. Horvath, and R. C. Starling. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J. Heart Lung Transplant. 32:1–11, 2013.

    Article  PubMed  Google Scholar 

  34. Nathan, M., C. Baird, F. Fynn-Thompson, C. Almond, R. Thiagarajan, P. Laussen, E. Blume, and F. Pigula. Successful implantation of a Berlin Heart biventricular assist device in a failing single ventricle. J. Thorac. Cardiovasc. Surg. 131:1407–1408, 2006.

    Article  PubMed  Google Scholar 

  35. Noor, M. R., C. H. Ho, K. H. Parker, A. R. Simon, N. R. Banner, and C. T. Bowles. Investigation of the characteristics of HeartWare HVAD and Thoratec Heart Mate II under steady and pulsatile flow conditions. Artif. Organs. 40:549–560, 2016.

    Article  CAS  PubMed  Google Scholar 

  36. Ohuchi, H. Where is the “Optimal” Fontan hemodynamics? Korean Circ. J. 47:842–857, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Peer, S. M., C. Yildirim, M. Desai, K. Ramakrishnan, P. Sinha, R. Jonas, C. Yerebakan, and K. Pekkan. Mechanical support of pulmonary blood flow as a strategy to support the Norwood circulation-lumped parameter model study. Eur. J. Cardiothorac. Surg. 62(1):ezac262, 2022.

    Article  PubMed  Google Scholar 

  38. Pekkan, K., I. B. Aka, E. Tutsak, E. Ermek, H. Balim, I. Lazoglu, and R. Turkoz. In vitro validation of a self-driving aortic-turbine venous-assist device for Fontan patients. J. Thorac. Cardiovasc. Surg. 156:292-301.e297, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pekkan, K., D. Frakes, D. De Zelicourt, C. W. Lucas, W. J. Parks, and A. P. Yoganathan. Coupling pediatric ventricle assist devices to the Fontan circulation: simulations with a lumped-parameter model. ASAIO J. 51:618–628, 2005.

    Article  PubMed  Google Scholar 

  40. Pekkan, K., H. D. Kitajima, D. de Zelicourt, J. M. Forbess, W. J. Parks, M. A. Fogel, S. Sharma, K. R. Kanter, D. Frakes, and A. P. Yoganathan. Total cavopulmonary connection flow with functional left pulmonary artery stenosis: angioplasty and fenestration in vitro. Circulation. 112:3264–3271, 2005.

    Article  PubMed  Google Scholar 

  41. Prather, R., A. Das, M. Farias, E. Divo, A. Kassab, and W. DeCampli. Parametric investigation of an injection-jet self-powered Fontan circulation. Sci. Rep. 12:2161, 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Presson Jr., R. G., W. A. Baumgartner Jr., A. J. Peterson, R. W. Glenny, and W. W. Wagner Jr. Pulmonary capillaries are recruited during pulsatile flow. J. Appl. Physiol. (1985) 92:1183–1190, 2002.

  43. Rehan, R., I. Kotchetkova, R. Cordina, and D. Celermajer. Adult congenital heart disease survivors at age 50 years: medical and psychosocial status. Heart Lung Circ. 30:261–266, 2021.

    Article  PubMed  Google Scholar 

  44. Reller, M. D., M. J. Strickland, T. Riehle-Colarusso, W. T. Mahle, and A. Correa. Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J. Pediatr. 153:807–813, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rich, J. D., and D. Burkhoff. HVAD flow waveform morphologies: theoretical foundation and implications for clinical practice. ASAIO J. 63:526–535, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rodefeld, M. D., J. H. Boyd, C. D. Myers, B. J. LaLone, A. J. Bezruczko, A. W. Potter, and J. W. Brown. Cavopulmonary assist: circulatory support for the univentricular Fontan circulation. Ann. Thorac. Surg. 76:1911–1916; discussion 1916, 2003.

  47. Rychik, J. The relentless effects of the Fontan paradox. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 19:37–43, 2016.

    Article  PubMed  Google Scholar 

  48. Rychik, J., A. M. Atz, D. S. Celermajer, B. J. Deal, M. A. Gatzoulis, M. H. Gewillig, T. Y. Hsia, D. T. Hsu, A. H. Kovacs, B. W. McCrindle, J. W. Newburger, N. A. Pike, M. Rodefeld, D. N. Rosenthal, K. R. Schumacher, B. S. Marino, K. Stout, G. Veldtman, A. K. Younoszai, Y. d’Udekem, American Heart Association Council on Cardiovascular Disease in the Young and Council Cardiovascular and Stroke Nursing. Evaluation and management of the child and adult with Fontan circulation: a scientific statement from the American Heart Association. Circulation. 140(6):e234–e284, 2019.

    Article  PubMed  Google Scholar 

  49. Schilling, C., K. Dalziel, R. Nunn, K. Du Plessis, W. Y. Shi, D. Celermajer, D. Winlaw, R. G. Weintraub, L. E. Grigg, D. J. Radford, A. Bullock, T. L. Gentles, G. R. Wheaton, T. Hornung, R. N. Justo, and Y. d’Udekem. The Fontan epidemic: population projections from the Australia and New Zealand Fontan Registry. Int. J. Cardiol. 219:14–19, 2016.

    Article  PubMed  Google Scholar 

  50. Shimizu, S., D. Une, T. Kawada, Y. Hayama, A. Kamiya, T. Shishido, and M. Sugimachi. Lumped parameter model for hemodynamic simulation of congenital heart diseases. J. Physiol. Sci. 68:103–111, 2018.

    Article  CAS  PubMed  Google Scholar 

  51. Siewnicka, A., K. Janiszowski, and M. Gawlikowski. A physical model of the human circulatory system for the modeling, control and diagnostic of cardiac support processes. In: Mechatronics 2013: Recent Technological and Scientific Advances. Berlin: Springer, 2014, pp. 825–832.

  52. Stark, J. Modified Senning operation for cavopulmonary connection with autologous tissue. J. Thorac. Cardiovasc. Surg. 109:1264, 1995.

    Article  CAS  PubMed  Google Scholar 

  53. Stergiopulos, N., J. J. Meister, and N. Westerhof. Determinants of stroke volume and systolic and diastolic aortic pressure. Am. J. Physiol. 270:H2050–H2059, 1996.

    CAS  PubMed  Google Scholar 

  54. Suga, H., K. Sagawa, and A. A. Shoukas. Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32:314–322, 1973.

    Article  CAS  PubMed  Google Scholar 

  55. Telyshev, D., M. Denisov, A. Markov, L. Fresiello, T. Verbelen, and S. Selishchev. Energetics of blood flow in Fontan circulation under VAD support. Artif. Organs. 44:50–57, 2020.

    Article  PubMed  Google Scholar 

  56. Telyshev, D. V., A. A. Pugovkin, I. A. Ephimov, A. Markov, S. Leonhardt, M. Walter, J. H. Karimov, and S. V. Selishchev. Correlation between myocardial function and electric current pulsatility of the Sputnik left ventricular assist device: in vitro study. Appl. Sci. 11:3359, 2021.

    Article  CAS  Google Scholar 

  57. Tree, M., P. M. Trusty, T. C. Slesnick, A. Yoganathan, S. Deshpande, and K. Maher. In vitro examination of the HeartWare CircuLite ventricular assist device in the Fontan connection. ASAIO J. 63:482–489, 2017.

    Article  PubMed  Google Scholar 

  58. Trusty, P. M., M. Tree, K. Maher, T. C. Slesnick, K. R. Kanter, A. P. Yoganathan, and S. R. Deshpande. An in vitro analysis of the PediMag and CentriMag for right-sided failing Fontan support. J. Thorac. Cardiovasc. Surg. 158:1413–1421, 2019.

    Article  PubMed  Google Scholar 

  59. Valdovinos, J., E. Shkolyar, G. P. Carman, and D. S. Levi. In vitro evaluation of an external compression device for Fontan mechanical assistance. Artif. Organs. 38:199–207, 2014.

    Article  PubMed  Google Scholar 

  60. Wang, D., G. Gao, M. Plunkett, G. Zhao, S. Topaz, C. Ballard-Croft, and J. B. Zwischenberger. A paired membrane umbrella double-lumen cannula ensures consistent cavopulmonary assistance in a Fontan sheep model. J. Thorac. Cardiovasc. Surg. 148:1041–1047; discussion 1047, 2014.

  61. Warnes, C. A., R. Liberthson, G. K. Danielson, A. Dore, L. Harris, J. I. Hoffman, J. Somerville, R. G. Williams, and G. D. Webb. Task Force 1: the changing profile of congenital heart disease in adult life. J. Am. Coll. Cardiol. 37:1170–1175, 2001.

    Article  CAS  PubMed  Google Scholar 

  62. Weinstein, S., R. Bello, C. Pizarro, F. Fynn-Thompson, J. Kirklin, K. Guleserian, R. Woods, C. Tjossem, R. Kroslowitz, P. Friedmann, and R. Jaquiss. The use of the Berlin Heart EXCOR in patients with functional single ventricle. J. Thorac. Cardiovasc. Surg. 147:697–705, 2014.

    Article  PubMed  Google Scholar 

  63. Woods, R. K., N. S. Ghanayem, M. E. Mitchell, S. Kindel, and R. A. Niebler. Mechanical circulatory support of the Fontan patient. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 20:20–27, 2017.

    Article  PubMed  Google Scholar 

  64. Yamada, A., Y. Shiraishi, H. Miura, H. M. Hashem, Y. Tsuboko, M. Yamagishi, and T. Yambe. Development of a thermodynamic control system for the Fontan circulation pulsation device using shape memory alloy fibers. J. Artif. Organs. 18:199–205, 2015.

    Article  CAS  PubMed  Google Scholar 

  65. Yigit, B., E. Tutsak, C. Yildirim, D. Hutchon, and K. Pekkan. Transitional fetal hemodynamics and gas exchange in premature postpartum adaptation: immediate vs. delayed cord clamping. Matern. Health Neonatol. Perinatol. 5:5, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yigit, M. B., W. J. Kowalski, D. J. Hutchon, and K. Pekkan. Transition from fetal to neonatal circulation: modeling the effect of umbilical cord clamping. J. Biomech. 48:1662–1670, 2015.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Medtronic for providing a loaner HeartWare MCS pump during the in vitro experiments.

Funding

Funding was provided by Research Grants from the European Research Council (ERC) Proof of Concept 966765 BloodTurbine, TUBITAK 118M369 and TUBITAK 118S108 (PI: Kerem Pekkan).

Author information

Authors and Affiliations

Authors

Contributions

ES, ONT, YA, MO, KP hypothesized and introduced the proposed concept. CY, BA, KP designed and conducted computational and experimental work. All authors wrote and edited the manuscript text.

Corresponding authors

Correspondence to Emrah Şişli or Kerem Pekkan.

Ethics declarations

Conflict of interest

KP and CY hold patents on Fontan assist devices but not directly related to the proposed configuration. Authors have no other conflict of interest.

Additional information

Associate Editor Lakshmi Prasad Dasi oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Tables 5, 6, and 7.

Table 5 Compliance data used in case Fontan
Table 6 Compliance data used in case VD-Cr and VD-cmcs
Table 7 Compliance data used in case VD-switch

Appendix 2

See Tables 8, 9, and 10.

Table 8 Resistance data used in case Fontan
Table 9 Resistance data used in case VD-Cr and VD-cmcs
Table 10 Resistance data used in case VD-switch

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şişli, E., Yıldırım, C., Aka, İ.B. et al. Switching the Left and the Right Hearts: A Novel Bi-ventricle Mechanical Support Strategy with Spared Native Single-Ventricle. Ann Biomed Eng 51, 2853–2872 (2023). https://doi.org/10.1007/s10439-023-03348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03348-1

Keywords

Navigation