Skip to main content
Log in

How Adaptive Ankle Exoskeleton Assistance Affects Stability During Perturbed and Unperturbed Walking in the Elderly

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Slowing the decline in walking mobility in the elderly is critical for maintaining the quality of life. Wearable assistive devices may 1 day facilitate mobility in older adults; however, we need to ensure that such devices do not impair stability in this population that is predisposed to fall-related injuries. This study sought to quantify the effects of untethered ankle exoskeleton assistance on measures of stability, whole-body dynamics, and strategies to maintain balance during normal and perturbed walking in older adults. Eight healthy participants (69–84 years) completed a treadmill-based walking protocol that included perturbations from unexpected belt accelerations while participants walked with and without ankle exoskeleton assistance. Exoskeleton assistance increased frontal plane range of angular momentum (8–14%, p ≤ 0.007), step width (18–34%, p ≤ 0.006), and ankle co-contraction (21–29%, p ≤ 0.039), and decreased biological ankle moment (16–27%, p ≤ 0.001) during unperturbed and perturbed walking; it did not affect the anteroposterior margin-of-stability, step length, trunk variability, or soleus activity during unperturbed and perturbed walking. Our finding that ankle exoskeleton assistance did not affect the anteroposterior margin-of-stability supports additional investigation of assistive exoskeletons for walking assistance in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bai, S., M. R. Islam, V. Power, and L. OŚullivan. User-centered development and performance assessment of a modular full-body exoskeleton (AXO-SUIT). Biomim. Intell. Robot. 2:100032, 2022.

    Google Scholar 

  2. Bayón, C., A. Q. L. Keemink, M. van Mierlo, W. Rampeltshammer, H. van der Kooij, and E. H. F. van Asseldonk. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking. J. NeuroEng. Rehabil. 19:21, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Beijersbergen, C. M. I., U. Granacher, A. A. Vandervoort, P. DeVita, and T. Hortobágyi. The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown. Ageing Res. Rev. 12:618–627, 2013.

    Article  CAS  PubMed  Google Scholar 

  4. Bierbaum, S., A. Peper, K. Karamanidis, and A. Arampatzis. Adaptational responses in dynamic stability during disturbed walking in the elderly. J. Biomech. 43:2362–2368, 2010.

    Article  PubMed  Google Scholar 

  5. Bishe, S. S. P. A., T. Nguyen, Y. Fang, and Z. F. Lerner. Adaptive ankle exoskeleton control: validation across diverse walking conditions. IEEE Trans. Med. Robot. Bionics. 3:801–812, 2021.

    Article  Google Scholar 

  6. Blake, A. J., K. Morgan, M. J. Bendall, H. Dallosso, S. B. J. Ebrahim, T. H. D. Arie, P. H. Fentem, and E. J. Bassey. Falls by elderly people at home: prevalence and associated factors. Age Ageing. 17:365–372, 1988.

    Article  CAS  PubMed  Google Scholar 

  7. Daly, R. M., B. E. Rosengren, G. Alwis, H. G. Ahlborg, I. Sernbo, and M. K. Karlsson. Gender specific age-related changes in bone density, muscle strength and functional performance in the elderly: a-10 year prospective population-based study. BMC Geriatr. 2013. https://doi.org/10.1186/1471-2318-13-71.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  9. Fang, Y., K. Harshe, J. R. Franz, and Z. F. Lerner. Feasibility evaluation of a dual-mode ankle exoskeleton to assist and restore community ambulation in older adults. Wearable Technol. 3:e13, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Finkelstein, E. A., P. S. Corso, and T. R. Miller. The Incidence and Economic Burden of Injuries in the United States. Oxford: Oxford University Press, pp. 1–202, 2009. https://doi.org/10.1093/acprof:oso/9780195179484.001.0001.

    Book  Google Scholar 

  11. Fujimoto, M., and L.-S. Chou. Sagittal plane momentum control during walking in elderly fallers. Gait Posture. 45:121–126, 2016.

    Article  PubMed  Google Scholar 

  12. Gasparri, G. M., J. Luque, and Z. F. Lerner. Proportional joint-moment control for instantaneously adaptive ankle exoskeleton assistance. IEEE Trans. Neural Syst. Rehabil. Eng. 27:751–759, 2019.

    Article  PubMed  Google Scholar 

  13. Grabiner, M. D., S. Donovan, M. Lou Bareither, J. R. Marone, K. Hamstra-Wright, S. Gatts, and K. L. Troy. Trunk kinematics and fall risk of older adults: translating biomechanical results to the clinic. J. Electromyogr. Kinesiol. 18:197–204, 2008.

    Article  PubMed  Google Scholar 

  14. Granata, K. P., and T. E. Lockhart. Dynamic stability differences in fall-prone and healthy adults. J. Electromyogr. Kinesiol. 18:172–178, 2008.

    Article  PubMed  Google Scholar 

  15. Harvey, T. A., B. C. Conner, and Z. F. Lerner. Does ankle exoskeleton assistance impair stability during walking in individuals with cerebral palsy? Ann. Biomed. Eng. 49:2522–2532, 2021.

    Article  PubMed  Google Scholar 

  16. Hnat, S. K., and A. J. van den Bogert. Inertial compensation for belt acceleration in an instrumented treadmill. J. Biomech. 47:3758–3761, 2014.

    Article  PubMed  Google Scholar 

  17. Hof, A. L., M. G. J. Gazendam, and W. E. Sinke. The condition for dynamic stability. J. Biomech. 38:1–8, 2005.

    Article  CAS  PubMed  Google Scholar 

  18. Jeon, W., L. Griffin, and H. Y. Hsiao. Effects of initial foot position on postural responses to lateral standing surface perturbations in younger and older adults. Gait Posture. 90:449–456, 2021.

    Article  PubMed  Google Scholar 

  19. Kang, H. G., and J. B. Dingwell. Dynamic stability of superior vs. inferior segments during walking in young and older adults. Gait Posture. 30:260–263, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kapsalyamov, A., P. K. Jamwal, S. Hussain, and M. H. Ghayesh. State of the art lower limb robotic exoskeletons for elderly assistance. IEEE Access. 7:95075–95086, 2019.

    Article  Google Scholar 

  21. Kim, D., and J. M. Hwang. The center of pressure and ankle muscle cocontraction in response to anterior-posterior perturbations. PLoS ONE. 13:e0207667, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kong, K., and D. Jeon. Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans. Mechatron. 11:428–432, 2006.

    Article  Google Scholar 

  23. Kurz, M. J., D. J. Arpin, and B. Corr. Differences in the dynamic gait stability of children with cerebral palsy and typically developing children. Gait Posture. 36:600–604, 2012.

    Article  PubMed  Google Scholar 

  24. Lee, H. J., and L. S. Chou. Detection of gait instability using the center of mass and center of pressure inclination angles. Arch. Phys. Med. Rehabil. 87:569–575, 2006.

    Article  PubMed  Google Scholar 

  25. Leestma, J. K., P. R. Golyski, C. R. Smith, G. S. Sawicki, and A. J. Young. Linking whole-body angular momentum and step placement during perturbed human walking. J. Exp. Biol. 226:jeb244760, 2023.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lerner, Z. F., D. L. Damiano, and T. C. Bulea. A robotic exoskeleton to treat crouch gait from cerebral palsy: initial kinematic and neuromuscular evaluation. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2016-October. 2016, pp. 2214–2217.

  27. Martelli, D., F. Vannetti, M. Cortese, P. Tropea, F. Giovacchini, S. Micera, V. Monaco, and N. Vitiello. The effects on biomechanics of walking and balance recovery in a novel pelvis exoskeleton during zero-torque control. Robotica. 32:1317–1330, 2014.

    Article  Google Scholar 

  28. McCrum, C., G. Epro, K. Meijer, W. Zijlstra, G.-P. Brüggemann, and K. Karamanidis. Locomotor stability and adaptation during perturbed walking across the adult female lifespan. J. Biomech. 49:1244–1247, 2016.

    Article  PubMed  Google Scholar 

  29. Neptune, R. R., and C. P. McGowan. Muscle contributions to whole-body sagittal plane angular momentum during walking. J. Biomech. 44:6–12, 2011.

    Article  CAS  PubMed  Google Scholar 

  30. Orekhov, G., Y. Fang, C. F. Cuddeback, and Z. F. Lerner. Usability and performance validation of an ultra-lightweight and versatile untethered robotic ankle exoskeleton. J. NeuroEng. Rehabil. 2021. https://doi.org/10.1186/s12984-021-00954-9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Perry, J. A., and M. Srinivasan. Walking with wider steps changes foot placement control, increases kinematic variability and does not improve linear stability. R. Soc. Open Sci. 4:160627, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rosenblatt, N. J., and M. D. Grabiner. Measures of frontal plane stability during treadmill and overground walking. Gait Posture. 31:380–384, 2010.

    Article  PubMed  Google Scholar 

  33. Rudolph, K. S., M. J. Axe, and L. Snyder-Mackler. Dynamic stability after ACL injury: who can hop? Knee Surg. Sports Traumatol Arthrosc. 8:262–269, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. Sawicki, G. S., O. N. Beck, I. Kang, and A. J. Young. The exoskeleton expansion: improving walking and running economy. J. NeuroEng. Rehabil. 2020. https://doi.org/10.1186/s12984-020-00663-9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schoene, D., C. Heller, Y. N. Aung, C. C. Sieber, W. Kemmler, and E. Freiberger. A systematic review on the influence of fear of falling on quality of life in older people: is there a role for falls? Clin. Interv. Aging. 14:701–719, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Silverman, A. K., and R. R. Neptune. Differences in whole-body angular momentum between below-knee amputees and non-amputees across walking speeds. J. Biomech. 44:379–385, 2011.

    Article  CAS  PubMed  Google Scholar 

  37. Simoneau, G. C., and D. E. Krebs. Whole-body momentum during gait: a preliminary study of non-fallers and frequent fallers. J. Appl. Biomech. 16:1–13, 2000.

    Article  Google Scholar 

  38. Siragy, T., and J. Nantel. Quantifying dynamic balance in young, elderly and Parkinson’s individuals: a systematic review. Front. Aging Neurosci. 10:387, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Süptitz, F., K. Karamanidis, M. M. Catalá, and G. P. Brüggemann. Symmetry and reproducibility of the components of dynamic stability in young adults at different walking velocities on the treadmill. J. Electromyogr. Kinesiol. 22:301–307, 2012.

    Article  PubMed  Google Scholar 

  40. Toebes, M. J. P., M. J. M. Hoozemans, R. Furrer, J. Dekker, and J. H. Van Dieën. Local dynamic stability and variability of gait are associated with fall history in elderly subjects. Gait Posture. 36:527–531, 2012.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Mary M. Winn-Radcliff and Gregory M. Winn through the Northern Arizona University Foundation. The authors thank Karl Harshe, Greg Orekhov, and Leah Liebelt for their assistance with this study.

Funding

Funding was provided by Northern Arizona University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary F. Lerner.

Ethics declarations

Conflict of interest

ZFL is a named inventor on awarded patents and pending utility patent applications that cover the aspects of the robotic device utilized in the study. He is also a co-founder of a company seeking to commercialize the device.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1086 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Lerner, Z.F. How Adaptive Ankle Exoskeleton Assistance Affects Stability During Perturbed and Unperturbed Walking in the Elderly. Ann Biomed Eng 51, 2606–2616 (2023). https://doi.org/10.1007/s10439-023-03310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03310-1

Keywords

Navigation