Skip to main content
Log in

Apple Vision Pro for Ophthalmology and Medicine

  • Letter to the Editor
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The emergence of new technologies continues to break barriers and transform the way we perceive and interact with the world. In this scientific article, we explore the potential impact of the new Apple XR headset on revolutionizing accessibility for individuals with visual deficits. With its rumored exceptional 4-K displays per eye and 5000 nits of brightness, this headset has the potential to enhance the visual experience and provide a new level of accessibility for users with visual impairments. We delve into the technical specifications, discuss the implications for accessibility, and envision how this groundbreaking technology could open up new possibilities for individuals with visual deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Apple Vision Pro. Apple. Accessed June 6, 2023. https://www.apple.com/apple-vision-pro/

  2. Yeung, A. W. K., A. Tosevska, E. Klager, et al. Virtual and augmented reality applications in medicine: analysis of the scientific literature. J. Med. Internet Res. 23(2):e25499, 2021. https://doi.org/10.2196/25499.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ong, C. W., M. C. J. Tan, M. Lam, and V. T. C. Koh. Applications of extended reality in ophthalmology: systematic review. J. Med. Internet Res. 23(8):e24152, 2021. https://doi.org/10.2196/24152.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ong, J., N. Zaman, E. Waisberg, S. A. Kamran, A. G. Lee, and A. Tavakkoli. Head-mounted digital metamorphopsia suppression as a countermeasure for macular-related visual distortions for prolonged spaceflight missions and terrestrial health. Wear. Technol. 3:26, 2022. https://doi.org/10.1017/wtc.2022.21.

    Article  Google Scholar 

  5. Waisberg, E., J. Ong, N. Zaman, S. A. Kamran, A. G. Lee, and A. Tavakkoli. Stroboscopic augmented reality as an approach to mitigate gravitational transition effects during interplanetary spaceflight. Int. J. Aviat. Aeronaut. Aerosp. 9:6, 2022.

    Google Scholar 

  6. Ong, J., N. Zaman, S. A. Kamran, et al. A multi-modal visual assessment system for monitoring spaceflight associated neuro-ocular syndrome (SANS) during long duration spaceflight. J. Vis. 22(3):6, 2022. https://doi.org/10.1167/jov.22.3.6.

    Article  Google Scholar 

  7. Waisberg, E., J. Ong, N. Zaman, S. A. Kamran, A. G. Lee, and A. Tavakkoli. Head-mounted dynamic visual acuity for G-transition effects during interplanetary spaceflight: technology development and results from an early validation study. Aerosp. Med. Hum. Perform. 93(11):800–805, 2022. https://doi.org/10.3357/AMHP.6092.2022.

    Article  PubMed  Google Scholar 

  8. Ong, J., A. Tavakkoli, N. Zaman, et al. Terrestrial health applications of visual assessment technology and machine learning in spaceflight associated neuro-ocular syndrome. NPJ. Microgravity. 8(1):37, 2022. https://doi.org/10.1038/s41526-022-00222-7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Waisberg, E., J. Ong, P. Paladugu, et al. Optimizing screening for preventable blindness with head-mounted visual assessment technology. J. Vis. Impair. Blindness. 116(4):579–581, 2022. https://doi.org/10.1177/0145482X221124186.

    Article  Google Scholar 

  10. Waisberg, E., J. Ong, P. Paladugu, et al. Advances in machine learning to detect preventable causes of blindness. Eye. 2022. https://doi.org/10.1038/s41433-022-02354-2.

    Article  PubMed  Google Scholar 

  11. Mehra, D., and P. H. Le. Physiology, night vision. In: StatPearls. StatPearls Publishing; 2023. Accessed June 6, 2023. http://www.ncbi.nlm.nih.gov/books/NBK545246/

  12. Backhouse, S., S. Fox, B. Ibrahim, and J. R. Phillips. Peripheral refraction in myopia corrected with spectacles versus contact lenses. Ophthalmic Physiol. Opt. 32(4):294–303, 2012. https://doi.org/10.1111/j.1475-1313.2012.00912.x.

    Article  PubMed  Google Scholar 

  13. Boycott, K. M., W. G. Pearce, M. A. Musarella, et al. Evidence for genetic heterogeneity in X-linked congenital stationary night blindness. Am. J. Hum. Genet. 62(4):865–875, 1998. https://doi.org/10.1086/301781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. West, K. P. Vitamin A deficiency disorders in children and women. Food Nutr. Bull. 24(4 Suppl):S78-90, 2003. https://doi.org/10.1177/15648265030244S204.

    Article  PubMed  Google Scholar 

  15. Ong, J., N. Zaman, E. Waisberg, S. A. Kamran, A. G. Lee, and A. Tavakkoli. Head-mounted digital metamorphopsia suppression as a countermeasure for macular-related visual distortions for prolonged spaceflight missions and terrestrial health. Wearable Technol. 3:e26, 2022. https://doi.org/10.1017/wtc.2022.21.

    Article  Google Scholar 

  16. Kanukollu, V. M., and G. Sood. Strabismus. In: StatPearls. StatPearls Publishing; 2023. Accessed June 6, 2023. http://www.ncbi.nlm.nih.gov/books/NBK560782/

  17. Cheng, W., M. H. Lynn, S. Pundlik, C. Almeida, G. Luo, and K. Houston. A smartphone ocular alignment measurement app in school screening for strabismus. BMC Ophthalmol. 21(1):150, 2021. https://doi.org/10.1186/s12886-021-01902-w.

    Article  PubMed  PubMed Central  Google Scholar 

  18. MyEyeGym: Your App for Eye Exercises—HealthXchange. Accessed June 6, 2023. https://www.healthxchange.sg:443/head-neck/eye-care/strabismus-eye-exercise-app

  19. Cepeda-Zapata, L. K., F.O. Romero-Soto, V. A. Díaz de León, et al. Implementation of a virtual reality rendered in portable devices for strabismus treatment based on conventional visual therapy. In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC); 2019:7189–7192. https://doi.org/10.1109/EMBC.2019.8857222

  20. Sarker, P., N. Zaman, J. Ong, et al. Test-retest reliability of virtual reality devices in quantifying for relative afferent pupillary defect. Trans. Vis. Sci. Technol. 12(6):2, 2023. https://doi.org/10.1167/tvst.12.6.2.

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouayad Masalkhi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masalkhi, M., Waisberg, E., Ong, J. et al. Apple Vision Pro for Ophthalmology and Medicine. Ann Biomed Eng 51, 2643–2646 (2023). https://doi.org/10.1007/s10439-023-03283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03283-1

Keywords

Navigation