Skip to main content
Log in

A Correspondence-Based Network Approach for Groupwise Analysis of Patient-Specific Spatiotemporal Data

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Methods for statistically analyzing patient-specific data that vary both spatially and over time are currently either limited to summary statistics or require elaborate surface registration. We propose a new method, called correspondence-based network analysis, which leverages particle-based shape modeling to establish correspondence across a population and preserve patient-specific measurements and predictions through statistical analysis. Herein, we evaluated this method using three published datasets of the hip describing cortical bone thickness of the proximal femur, cartilage contact stress, and dynamic joint space between control and patient cohorts to evaluate activity- and group-based differences, as applicable, using traditional statistical parametric mapping (SPM) and our proposed spatially considerate correspondence-based network analysis approach. The network approach was insensitive to correspondence density, while the traditional application of SPM showed decreasing area of the region of significance with increasing correspondence density. In comparison to SPM, the network approach identified broader and more connected regions of significance for all three datasets. The correspondence-based network analysis approach identified differences between groups and activities without loss of subject and spatial specificity which could improve clinical interpretation of results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Glassman, S. D., S. Berven, K. Bridwell, W. Horton, and J. R. Dimar. Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine. 30:682–688, 2005.

    Article  PubMed  Google Scholar 

  2. Laprade, J., and E. Culham. Radiographic measures in subjects who are asymptomatic and subjects with patellofemoral pain syndrome. Clin. Orthopaed. Relat. Res. 414:172–182, 2003.

    Article  Google Scholar 

  3. Tannast, M., K. A. Siebenrock, and S. E. Anderson. Femoroacetabular impingement: radiographic diagnosis–what the radiologist should know. AJR Am. J. Roentgenol. 188:1540–1552, 2007.

    Article  PubMed  Google Scholar 

  4. Xin, P., P. Nie, B. Jiang, S. Deng, G. Hu, and S. G. Shen. Material assignment in finite element modeling: heterogeneous properties of the mandibular bone. J. Craniofac. Surg. 24:405–410, 2013.

    Article  PubMed  Google Scholar 

  5. Provost, J., A. Garofalakis, J. Sourdon, D. Bouda, B. Berthon, T. Viel, M. Perez-Liva, C. Lussey-Lepoutre, J. Favier, M. Correia, M. Pernot, J. Chiche, J. Pouysségur, M. Tanter, and B. Tavitian. Simultaneous positron emission tomography and ultrafast ultrasound for hybrid molecular, anatomical and functional imaging. Nat. Biomed. Eng. 2:85–94, 2018.

    Article  CAS  PubMed  Google Scholar 

  6. Ferreira, P. F., P. J. Kilner, L. A. McGill, S. Nielles-Vallespin, A. D. Scott, S. Y. Ho, K. P. McCarthy, M. M. Haba, T. F. Ismail, P. D. Gatehouse, R. de Silva, A. R. Lyon, S. K. Prasad, D. N. Firmin, and D. J. Pennell. In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 16:87, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ghonim, S., I. Voges, P. D. Gatehouse, J. Keegan, M. A. Gatzoulis, P. J. Kilner, and S. V. Babu-Narayan. Myocardial architecture, mechanics, and fibrosis in congenital heart disease. Front. Cardiovasc. Med. 4:30, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hsu, E. W., A. L. Muzikant, S. A. Matulevicius, R. C. Penland, and C. S. Henriquez. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am. J. Physiol. 274:H1627-1634, 1998.

    CAS  PubMed  Google Scholar 

  9. Merchant, S. S., A. D. Gomez, J. L. Morgan, and E. W. Hsu. Parametric modeling of the mouse left ventricular myocardial fiber structure. Ann. Biomed. Eng. 44:2661–2673, 2016.

    Article  PubMed  Google Scholar 

  10. Scollan, D. F., A. Holmes, R. Winslow, and J. Forder. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am. J. Physiol. 275:H2308-2318, 1998.

    CAS  PubMed  Google Scholar 

  11. Ogawa, S., T. M. Lee, A. R. Kay, and D. W. Tank. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U.S.A. 87:9868–9872, 1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anwander, H., K. S. Rakhra, G. Melkus, and P. E. Beaule. T1rho hip cartilage mapping in assessing patients with cam morphology: how can we optimize the regions of interest? Clin. Orthop. Relat. Res. 475:1066–1075, 2017.

    Article  PubMed  Google Scholar 

  13. Beaule, P. E., A. D. Speirs, H. Anwander, G. Melkus, K. Rakhra, H. Frei, and M. Lamontagne. Surgical correction of cam deformity in association with femoroacetabular impingement and its impact on the degenerative process within the hip joint. J. Bone. Jt. Surg. Am. 99:1373–1381, 2017.

    Article  Google Scholar 

  14. Samaan, M. A., V. Pedoia, A. L. Zhang, M. C. Gallo, T. M. Link, R. B. Souza, and S. Majumdar. A novel mr-based method for detection of cartilage delamination in femoroacetabular impingement patients. J. Orthop. Res. 36(3):971–978, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Samaan, M. A., A. L. Zhang, M. C. Gallo, B. J. Schwaiger, T. M. Link, R. B. Souza, and S. Majumdar. Quantitative magnetic resonance arthrography in patients with femoroacetabular impingement. J. Magn. Reson. Imaging. 44:1539–1545, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Subburaj, K., A. Valentinitsch, A. B. Dillon, G. B. Joseph, X. Li, T. M. Link, T. P. Vail, and S. Majumdar. Regional variations in MR relaxation of hip joint cartilage in subjects with and without femoralacetabular impingement. Magn. Reson. Imaging. 31:1129–1136, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harris, M. D., A. E. Anderson, C. R. Henak, B. J. Ellis, C. L. Peters, and J. A. Weiss. Finite element prediction of cartilage contact stresses in normal human hips. J. Orthopaed. Res. 30:1133–1139, 2012.

    Article  Google Scholar 

  18. Henak, C. R., C. L. Abraham, A. E. Anderson, S. A. Maas, B. J. Ellis, C. L. Peters, and J. A. Weiss. Patient-specific analysis of cartilage and labrum mechanics in human hips with acetabular dysplasia. Osteoarthr. Cartil. 22:210–217, 2014.

    Article  CAS  Google Scholar 

  19. Henak, C. R., E. D. Carruth, A. E. Anderson, M. D. Harris, B. J. Ellis, C. L. Peters, and J. A. Weiss. Finite element predictions of cartilage contact mechanics in hips with retroverted acetabula. Osteoarthr. Cartil. 21:1522–1529, 2013.

    Article  CAS  Google Scholar 

  20. Miura, M., J. Nakamura, Y. Matsuura, Y. Wako, T. Suzuki, S. Hagiwara, S. Orita, K. Inage, Y. Kawarai, M. Sugano, K. Nawata, and S. Ohtori. Prediction of fracture load and stiffness of the proximal femur by CT-based specimen specific finite element analysis: cadaveric validation study. BMC Musculoskelet. Disorders. 18:536, 2017.

    Article  Google Scholar 

  21. Shim, V. B., J. W. Fernandez, P. B. Gamage, C. Regnery, D. W. Smith, B. S. Gardiner, D. G. Lloyd, and T. F. Besier. Subject-specific finite element analysis to characterize the influence of geometry and material properties in Achilles tendon rupture. J. Biomech. 47:3598–3604, 2014.

    Article  PubMed  Google Scholar 

  22. Van Houcke, J., E. A. Audenaert, P. R. Atkins, and A. E. Anderson. A combined geometric morphometric and discrete element modeling approach for hip cartilage contact mechanics. Front. Bioeng. Biotechnol. 8:318, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang, Z., D. Sui, H. Qin, H. Li, and Z. Zhang. Contact pressure distribution of the hip joint during closed reduction of developmental dysplasia of the hip: a patient-specific finite element analysis. BMC Musculoskelet. Disorders. 21:600, 2020.

    Article  Google Scholar 

  24. Friston, K. J., A. P. Holmes, K. J. Worsley, J. P. Poline, C. D. Frith, and R. S. Frackowiak. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Map. 2:189–210, 1994.

    Article  Google Scholar 

  25. Pataky, T. C. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J. Biomech. 43:1976–1982, 2010.

    Article  PubMed  Google Scholar 

  26. Friston, K. J., C. D. Frith, P. F. Liddle, and R. S. Frackowiak. Comparing functional (PET) images: the assessment of significant change. J. Cereb. Blood Flow Metab. 11:690–699, 1991.

    Article  CAS  PubMed  Google Scholar 

  27. Worsley, K. J., A. C. Evans, S. Marrett, and P. Neelin. A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 12:900–918, 1992.

    Article  CAS  PubMed  Google Scholar 

  28. Pataky, T. C., and J. Y. Goulermas. Pedobarographic statistical parametric mapping (pSPM): A pixel-level approach to foot pressure image analysis. J. Biomech. 41:2136–2143, 2008.

    Article  PubMed  Google Scholar 

  29. Carballido-Gamio, J., R. Harnish, I. Saeed, T. Streeper, S. Sigurdsson, S. Amin, E. J. Atkinson, T. M. Therneau, K. Siggeirsdottir, X. Cheng, L. J. Melton 3rd., J. Keyak, V. Gudnason, S. Khosla, T. B. Harris, and T. F. Lang. Proximal femoral density distribution and structure in relation to age and hip fracture risk in women. J. Bone Miner. Res. 28:537–546, 2013.

    Article  PubMed  Google Scholar 

  30. Pedoia, V., X. Li, F. Su, N. Calixto, and S. Majumdar. Fully automatic analysis of the knee articular cartilage T1ρ relaxation time using voxel-based relaxometry. J. Magn. Reson. Imaging. 43:970–980, 2016.

    Article  PubMed  Google Scholar 

  31. Pell, G. S., R. S. Briellmann, A. B. Waites, D. F. Abbott, and G. D. Jackson. Voxel-based relaxometry: a new approach for analysis of T2 relaxometry changes in epilepsy. Neuroimage. 21:707–713, 2004.

    Article  PubMed  Google Scholar 

  32. Li, W., J. Kornak, T. Harris, J. Keyak, C. Li, Y. Lu, X. Cheng, and T. Lang. Identify fracture-critical regions inside the proximal femur using statistical parametric mapping. Bone. 44:596–602, 2009.

    Article  PubMed  Google Scholar 

  33. Hopfinger, J. B., C. Büchel, A. P. Holmes, and K. J. Friston. A study of analysis parameters that influence the sensitivity of event-related fMRI analyses. Neuroimage. 11:326–333, 2000.

    Article  CAS  PubMed  Google Scholar 

  34. Worsley K. J., J. Taylor, F. Carbonell, M. Chung, E. Duerden, B. Bernhardt, O. Lyttelton, M. Boucher and A. Evans. A Matlab toolbox for the statistical analysis of univariate and multivariate surface and volumetric data using linear mixed effects models and random field theory. In: NeuroImage Organisation for Human Brain Mapping 2009 Annual Meeting2009, p. S102.

  35. MacKay, J. W., J. D. Kaggie, G. M. Treece, S. M. McDonnell, W. Khan, A. R. Roberts, R. L. Janiczek, M. J. Graves, T. D. Turmezei, A. W. McCaskie, and F. J. Gilbert. Three-dimensional surface-based analysis of cartilage MRI data in knee osteoarthritis: validation and initial clinical application. J. Magn. Reson. Imaging. 52:1139–1151, 2020.

    Article  PubMed  Google Scholar 

  36. Poole, K. E., G. M. Treece, P. M. Mayhew, J. Vaculík, P. Dungl, M. Horák, J. J. Štěpán, and A. H. Gee. Cortical thickness mapping to identify focal osteoporosis in patients with hip fracture. PLoS ONE. 7:e38466, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Treece, G. M., A. H. Gee, C. Tonkin, S. K. Ewing, P. M. Cawthon, D. M. Black, and K. E. Poole. Predicting hip fracture type with cortical bone mapping (CBM) in the osteoporotic fractures in men (MrOS) study. J. Bone Miner. Res. 30:2067–2077, 2015.

    Article  PubMed  Google Scholar 

  38. Treece, G. M., K. E. Poole, and A. H. Gee. Imaging the femoral cortex: thickness, density and mass from clinical CT. Med. Image Anal. 16:952–965, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turmezei, T. D., S. B. Low, S. Rupret, G. M. Treece, A. H. Gee, J. W. MacKay, J. A. Lynch, K. E. S. Poole, and N. A. Segal. Quantitative three-dimensional assessment of knee joint space width from weight-bearing CT. Radiology. 299:649–659, 2021.

    Article  PubMed  Google Scholar 

  40. Forman, S. D., J. D. Cohen, M. Fitzgerald, W. F. Eddy, M. A. Mintun, and D. C. Noll. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn. Reson. Med. 33:636–647, 1995.

    Article  CAS  PubMed  Google Scholar 

  41. Brenneman Wilson E. C., A. A. Gatti and M. R. Maly. A new technique to evaluate the impact of running on knee cartilage deformation by region. Magnetic Resonance Materials in Physics, Biology and Medicine 34: 593-603, 2021.

  42. Gatti A. A., P. J. Keir, M. D. Noseworthy and M. R. Maly. Investigating acute changes in osteoarthritic cartilage by integrating biomechanics and statistical shape models of bone: data from the osteoarthritis initiative. Magma 1-13, 2022.

  43. Pappas, I., H. Hector, K. Haws, B. Curran, A. S. Kayser, and M. D’Esposito. Improved normalization of lesioned brains via cohort-specific templates. Hum. Brain Map. 42:4187–4204, 2021.

    Article  Google Scholar 

  44. Cates J., S. Elhabian and R. Whitaker. Chapter 10 - ShapeWorks: Particle-Based Shape Correspondence and Visualization Software. In: Statistical Shape and Deformation Analysis, edited by G. Zheng, S. Li and G. SzékelyAcademic Press, 2017, pp. 257-298.

  45. Cates, J., P. T. Fletcher, M. Styner, M. Shenton, and R. Whitaker. Shape modeling and analysis with entropy-based particle systems. Inf. Process. Med. Imaging. 20:333–345, 2007.

    PubMed  PubMed Central  Google Scholar 

  46. Atkins, P. R., S. Y. Elhabian, P. Agrawal, M. D. Harris, R. T. Whitaker, J. A. Weiss, C. L. Peters, and A. E. Anderson. Quantitative comparison of cortical bone thickness using correspondence-based shape modeling in patients with cam femoroacetabular impingement. J. Orthopaed. Res. 35:1743–1753, 2017.

    Article  Google Scholar 

  47. Bieging, E. T., A. Morris, B. D. Wilson, C. J. McGann, N. F. Marrouche, and J. Cates. Left atrial shape predicts recurrence after atrial fibrillation catheter ablation. J. Cardiovasc. Electrophysiol. 29:966–972, 2018.

    Article  PubMed  Google Scholar 

  48. Jacxsens, M., S. Y. Elhabian, S. E. Brady, P. N. Chalmers, A. M. Mueller, R. Z. Tashjian, and H. B. Henninger. Thinking outside the glenohumeral box: Hierarchical shape variation of the periarticular anatomy of the scapula using statistical shape modeling. J. Orthopaed. Res. 38:2272–2279, 2020.

    Article  Google Scholar 

  49. Krähenbühl, N., A. L. Lenz, R. J. Lisonbee, A. C. Peterson, P. R. Atkins, B. Hintermann, C. L. Saltzman, A. E. Anderson, and A. Barg. Morphologic analysis of the subtalar joint using statistical shape modeling. J. Orthopaed. Res. 38:2625–2633, 2020.

    Article  Google Scholar 

  50. Lewis, C. L., K. Uemura, P. R. Atkins, A. L. Lenz, N. M. Fiorentino, S. K. Aoki, and A. E. Anderson. Patients with cam-type femoroacetabular impingement demonstrate increased change in bone-to-bone distance during walking: a dual fluoroscopy study. J. Orthop. Res. 41(1):161–169, 2022.

    Article  PubMed  Google Scholar 

  51. Fagerland, M. W. t-tests, non-parametric tests, and large studies—a paradox of statistical practice? BMC Med. Res. Methodol. 12:78, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hubbard, A. E., J. Ahern, N. L. Fleischer, M. V. D. Laan, S. A. Lippman, N. Jewell, T. Bruckner, and W. A. Satariano. To GEE or Not to GEE: comparing population average and mixed models for estimating the associations between neighborhood risk factors and health. Epidemiology. 21:467–474, 2010.

    Article  PubMed  Google Scholar 

  53. Dunn, O. J. Multiple comparisons using rank sums. Technometrics. 6:241–252, 1964.

    Article  Google Scholar 

  54. Meyers, L. S., G. Gamst, and A. J. Guarino. Applied Multivariate Research : Design and Interpretation. Thousand Oaks: SAGE Publications, 2006.

    Google Scholar 

  55. Monu, U. D., C. D. Jordan, B. L. Samuelson, B. A. Hargreaves, G. E. Gold, and E. J. McWalter. Cluster analysis of quantitative MRI T(2) and T(1ρ) relaxation times of cartilage identifies differences between healthy and ACL-injured individuals at 3T. Osteoarthr. Cartil. 25:513–520, 2017.

    Article  CAS  Google Scholar 

  56. Johannesdottir, F., T. Turmezei, and K. E. Poole. Cortical bone assessed with clinical computed tomography at the proximal femur. J. Bone Miner. Res. 29:771–783, 2014.

    Article  PubMed  Google Scholar 

  57. Kazakia, G. J., B. Hyun, A. J. Burghardt, R. Krug, D. C. Newitt, A. E. de Papp, T. M. Link, and S. Majumdar. In vivo determination of bone structure in postmenopausal women: a comparison of HR-pQCT and high-field MR imaging. J. Bone Miner. Res. 23:463–474, 2008.

    Article  PubMed  Google Scholar 

  58. Amani, A., M. Bellver, L. Del Rio, J. R. Torrella, A. Lizarraga, L. Humbert, and F. Drobnic. Femur 3D-DXA assessment in female football players, swimmers and sedentary controls. Int. J. Sports Med. 44(02):420–426, 2022.

    PubMed  Google Scholar 

  59. Ling, M., X. Li, Y. Xu, and Y. Fan. Spatial distribution of hip cortical thickness in postmenopausal women with different osteoporotic fractures. Arch. Osteoporos. 16:172, 2021.

    Article  PubMed  Google Scholar 

  60. Yu, A., J. Carballido-Gamio, L. Wang, T. F. Lang, Y. Su, X. Wu, M. Wang, J. Wei, C. Yi, and X. Cheng. Spatial differences in the distribution of bone between femoral neck and trochanteric fractures. J. Bone Miner. Res. 32:1672–1680, 2017.

    Article  PubMed  Google Scholar 

  61. Anderson, A. E., B. J. Ellis, S. A. Maas, and J. A. Weiss. Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip. J. Biomech. 43:1351–1357, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wesseling, M., S. Van Rossom, I. Jonkers, and C. R. Henak. Subject-specific geometry affects acetabular contact pressure during gait more than subject-specific loading patterns. Comput. Methods Biomech. Biomed. Eng. 22:1323–1333, 2019.

    Article  Google Scholar 

  63. Fritz, B., J. Fritz, S. F. Fucentese, C. W. A. Pfirrmann, and R. Sutter. Three-dimensional analysis for quantification of knee joint space width with weight-bearing CT: comparison with non-weight-bearing CT and weight-bearing radiography. Osteoarthr. Cartil. 30:671–680, 2022.

    Article  CAS  Google Scholar 

  64. Day, M. A., M. Ho, K. Dibbern, K. Rao, Q. An, D. D. Anderson, and J. L. Marsh. Correlation of 3D joint space width from weightbearing CT with outcomes after intra-articular calcaneal fracture. Foot Ankle Int. 41:1106–1116, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Williams, T. G., A. P. Holmes, M. Bowes, G. Vincent, C. E. Hutchinson, J. C. Waterton, R. A. Maciewicz, and C. J. Taylor. Measurement and visualisation of focal cartilage thickness change by MRI in a study of knee osteoarthritis using a novel image analysis tool. Br. J. Radiol. 83:940–948, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Van Oevelen, A., I. Van den Borre, K. Duquesne, A. Pizurica, J. Victor, N. Nauwelaers, P. Claes, and E. Audenaert. Wear patterns in knee OA correlate with native limb geometry. Front. Bioeng. Biotechnol. 10:1042441, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gee, A. H., and G. M. Treece. Systematic misregistration and the statistical analysis of surface data. Med. Image Anal. 18:385–393, 2014.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Institutes of Health (NIH), under grants R01 EB016701, U24 EB029011, and R01 AR076120, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew E. Anderson.

Ethics declarations

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 586 kb)

Supplementary file2 (TIF 2782 kb)

Supplementary file3 (MP4 6416 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkins, P.R., Morris, A., Elhabian, S.Y. et al. A Correspondence-Based Network Approach for Groupwise Analysis of Patient-Specific Spatiotemporal Data. Ann Biomed Eng 51, 2289–2300 (2023). https://doi.org/10.1007/s10439-023-03270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03270-6

Keywords

Navigation