Skip to main content

Advertisement

Log in

3D and 4D Bioprinting Technologies: A Game Changer for the Biomedical Sector?

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bioprinting is an innovative and emerging technology of additive manufacturing (AM) and has revolutionized the biomedical sector by printing three-dimensional (3D) cell-laden constructs in a precise and controlled manner for numerous clinical applications. This approach uses biomaterials and varying types of cells to print constructs for tissue regeneration, e.g., cardiac, bone, corneal, cartilage, neural, and skin. Furthermore, bioprinting technology helps to develop drug delivery and wound healing systems, bio-actuators, bio-robotics, and bio-sensors. More recently, the development of four-dimensional (4D) bioprinting technology and stimuli-responsive materials has transformed the biomedical sector with numerous innovations and revolutions. This issue also leads to the exponential growth of the bioprinting market, with a value over billions of dollars. The present study reviews the concepts and developments of 3D and 4D bioprinting technologies, surveys the applications of these technologies in the biomedical sector, and discusses their potential research topics for future works. It is also urged that collaborative and valiant efforts from clinicians, engineers, scientists, and regulatory bodies are needed for translating this technology into the biomedical, pharmaceutical, and healthcare systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

4D:

Four-dimensional

AM:

Additive manufacturing

CAD:

Computer-aided design

CNF:

Cellulose nanofibers

CNT:

Carbon nanotubes

CT:

Computed tomography

DIW:

Direct ink writing

DLP:

Digital light processing

DOX:

Doxorubicin

FDA:

Food and drug administration

FDM:

Fused deposition modeling

ECM:

Extracellular matrix

GelMA:

Gelatin methacryloyl

GNPs:

Gold nanoparticles

HA:

Hyaluronic acid

HAp:

Hydroxyapatite

MeHA:

Methacrylated hyaluronic acid

ML:

Machine learning

MNP:

Magnetic nanoparticle

MRI:

Magnetic resonance imaging

nHAp:

Nanohydroxyapatite

NF:

Nanofibers

NIR:

Near-infrared

NPs:

Nanoparticles

PGA:

Polyglycolic acid

PEGDA:

Polyethylene glycol diacrylate

PEG:

Polyethylene glycol

PET:

Poly (ethylene terephthalate)

PLA:

Polylactic acid

PLGA:

Polylactic glycolic acid

PNIPAM:

Poly(N-isopropylacrylamide)

PPy:

Polypyrrole

SEM:

Scanning electron microscope

SLA:

Stereolithography

SLS:

Selective laser sintering

SMP:

Shape memory polymer

SMPC:

Shape memory polymer composite

TE:

Tissue engineering

TERM:

Tissue engineering and regenerative medicine

TRL:

Technology readiness level

UV:

Ultraviolet

References

  1. Moetazedian, A., A. Gleadall, X. Han, A. Ekinci, E. Mele, and V. V. Silberschmidt. Mechanical performance of 3D printed polylactide during degradation. Addit. Manuf. 38:101764, 2021. https://doi.org/10.1016/J.ADDMA.2020.101764.

    Article  CAS  Google Scholar 

  2. Tümer, E. H., and H. Y. Erbil. Extrusion-based 3D printing applications of PLA composites: a review. Coatings. 2021. https://doi.org/10.3390/coatings11040390.

    Article  Google Scholar 

  3. Tareq, M. S., T. Rahman, M. Hossain, and P. Dorrington. Additive manufacturing and the COVID-19 challenges: an in-depth study. J. Manuf. Syst. 60:787–798, 2021. https://doi.org/10.1016/j.jmsy.2020.12.021.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen, D. X. B. Extrusion bioprinting of scaffolds. In Extrusion Bioprinting of Scaffolds for Tissue Engineering Applications. Cham, Springer, 2019, pp. 117–145.

  5. Betancourt, N., and X. Chen. Review of extrusion-based multi-material bioprinting processes. Bioprinting.25:e00189, 2022.

    Article  Google Scholar 

  6. Zimmerling, A., Y. Zhou, and X. Chen. Bioprinted constructs for respiratory tissue engineering. Bioprinting.24:e00177, 2021.

    Article  Google Scholar 

  7. RezvaniGhomi, E., F. Khosravi, R. E. Neisiany, S. Singh, and S. Ramakrishna. Future of additive manufacturing in healthcare. Curr. Opin. Biomed. Eng. 17:100255, 2021. https://doi.org/10.1016/J.COBME.2020.100255.

    Article  CAS  Google Scholar 

  8. Wang, L., C. Wang, S. Wu, Y. Fan, and X. Li. Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomater. Sci. 8(10):2714–2733, 2020. https://doi.org/10.1039/D0BM00269K.

    Article  CAS  PubMed  Google Scholar 

  9. Zadpoor, A. A., and J. Malda. Additive manufacturing of biomaterials, tissues, and organs. Ann. Biomed. Eng. 45(1):1–11, 2017. https://doi.org/10.1007/s10439-016-1719-y.

    Article  PubMed  Google Scholar 

  10. Saxena, S., and D. P. Katare. 3D-printed device with integrated biosensors for biomedical applications. Biosens. Based Adv. Cancer Diagn. 2022. https://doi.org/10.1016/B978-0-12-823424-2.00018-1.

    Article  Google Scholar 

  11. Duan, B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann. Biomed. Eng. 45(1):195–209, 2017. https://doi.org/10.1007/s10439-016-1607-5.

    Article  PubMed  Google Scholar 

  12. Maryan, A. S., M. Montazer, and A. Rashidi. Introducing old-look, soft handle, flame retardant, and anti-bacterial properties to denim garments using nano clay. J. Eng. Fiber. Fabric. 8(4):68–77, 2013. https://doi.org/10.1177/155892501300800416.

  13. Yarali, E., E. Jebellat, R. Noroozi, and M. A. Nazari. Experimentally investigating mechanical properties of liver tissue in compression test and numerically analyzing it by hyperelastic model. In 3rd International Conference on Mechanical and Aerospace Engineering, Tehran, 2018.

  14. Herath, B., et al. Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects. Mater. Des. 212:110224, 2021. https://doi.org/10.1016/J.MATDES.2021.110224.

    Article  CAS  Google Scholar 

  15. Noroozi, R., M. MashhadiKashtiban, H. Taghvaei, A. Zolfagharian, and M. Bodaghi. 3D-printed microfluidic droplet generation systems for drug delivery applications. Mater. Today Proc. 2022. https://doi.org/10.1016/j.matpr.2022.09.363.

    Article  Google Scholar 

  16. Arif, Z. U., M. Y. Khalid, R. Noroozi, A. Sadeghianmarayn, M. Jalalvand, and M. Hossain. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications. Int. J. Biol. Macromol. 218:930–968, 2022. https://doi.org/10.1016/j.ijbiomac.2022.07.140.

    Article  CAS  PubMed  Google Scholar 

  17. Bisht, B., A. Hope, A. Mukherjee, and M. K. Paul. Advances in the fabrication of scaffold and 3D printing of biomimetic bone graft. Ann. Biomed. Eng. 49(4):1128–1150, 2021. https://doi.org/10.1007/s10439-021-02752-9.

    Article  PubMed  Google Scholar 

  18. Bahraminasab, M. Challenges on optimization of 3D-printed bone scaffolds. Biomed. Eng. Online. 19(1):69, 2020. https://doi.org/10.1186/s12938-020-00810-2.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shanmugam, V., et al. Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. Int. J. Fatigue. 143:106007, 2021. https://doi.org/10.1016/J.IJFATIGUE.2020.106007.

    Article  CAS  Google Scholar 

  20. Vrana, N. E., et al. From 3D printing to 3D bioprinting: the material properties of polymeric material and its derived bioink for achieving tissue specific architectures. Cell Tissue Bank. 23(3):417–440, 2022. https://doi.org/10.1007/s10561-021-09975-z.

    Article  PubMed  Google Scholar 

  21. Tejo-Otero, A., I. Buj-Corral, and F. Fenollosa-Artés. 3D Printing in medicine for preoperative surgical planning: a review. Ann. Biomed. Eng. 48(2):536–555, 2020. https://doi.org/10.1007/s10439-019-02411-0.

    Article  CAS  PubMed  Google Scholar 

  22. Formlabs. Guide to 3D Printing Medical Devices. Somerville: Fromlabs.

  23. Langer, R., and J. P. Vacanti. Tissue engineering. Science. 260(5110):920–926, 1993.

    Article  CAS  PubMed  Google Scholar 

  24. Mason, C., and P. Dunnill. A brief definition of regenerative medicine. Regen. Med. 3(1):1–5, 2008.

    Article  PubMed  Google Scholar 

  25. Lysaght, M. J., and J. Crager. Origins. Tissue Eng. Part A Tissue Eng. 15(7):1449–1451, 2009.

    Article  Google Scholar 

  26. Lindroos, B., R. Suuronen, and S. Miettinen. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev. Rep. 7(2):269–291, 2011.

    Article  PubMed  Google Scholar 

  27. Porada, C. D., A. J. Atala, and G. Almeida-Porada. The hematopoietic system in the context of regenerative medicine. Methods. 99:44–61, 2016.

    Article  CAS  PubMed  Google Scholar 

  28. Han, F., et al. Tissue engineering and regenerative medicine: achievements, future, and sustainability in Asia. Front. Bioeng. Biotechnol. 8:83, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Abdelbasset, W. K., et al. Alginate-based hydrogels and tubes, as biological macromolecule-based platforms for peripheral nerve tissue engineering: a review. Ann. Biomed. Eng. 50(6):628–653, 2022. https://doi.org/10.1007/s10439-022-02955-8.

    Article  PubMed  Google Scholar 

  30. Salgado, A. J., et al. Tissue engineering and regenerative medicine: past, present, and future. Int. Rev. Neurobiol. 108:1–33, 2013.

    Article  CAS  PubMed  Google Scholar 

  31. Sivaraman, S., et al. Evaluation of poly (carbonate-urethane) urea (PCUU) scaffolds for urinary bladder tissue engineering. Ann. Biomed. Eng. 47(3):891–901, 2019. https://doi.org/10.1007/s10439-018-02182-0.

    Article  PubMed  Google Scholar 

  32. Frey, B. M., S. M. Zeisberger, and S. P. Hoerstrup. Tissue engineering and regenerative medicine-new initiatives for individual treatment offers. Transfus. Med. Hemother. 43(5):318, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang, Q., B. Gao, and F. Xu. Recent advances in 4D bioprinting. Biotechnol. J. 15(1):1900086, 2020. https://doi.org/10.1002/biot.201900086.

    Article  CAS  Google Scholar 

  34. Zhang, J., et al. Advances in 4D printed shape memory polymers: from 3D printing, smart excitation, and response to applications. Adv. Mater. Technol. 2022. https://doi.org/10.1002/admt.202101568.

    Article  PubMed  Google Scholar 

  35. Tibbits, S. 4D printing: multi-material shape change. Archit. Des. 84(1):116–121, 2014.

    Google Scholar 

  36. Gao, B., Q. Yang, X. Zhao, G. Jin, Y. Ma, and F. Xu. 4D bioprinting for biomedical applications. Trends Biotechnol. 34(9):746–756, 2016. https://doi.org/10.1016/J.TIBTECH.2016.03.004.

    Article  CAS  PubMed  Google Scholar 

  37. Miao, S., et al. 4D printing of polymeric materials for tissue and organ regeneration. Mater. Today. 20(10):577–591, 2017. https://doi.org/10.1016/J.MATTOD.2017.06.005.

    Article  CAS  Google Scholar 

  38. Zhou, Y., et al. From 3D to 4D printing: approaches and typical applications. J. Mech. Sci. Technol. 29(10):4281–4288, 2015.

    Article  Google Scholar 

  39. Liu, F., W. Wang, S. Hinduja, and P. J. Bártolo. Hybrid additive manufacturing system for zonal plasma-treated scaffolds. 3D Print. Addit. Manuf. 5(3):205–213, 2018. https://doi.org/10.1089/3dp.2018.0056.

    Article  Google Scholar 

  40. Gao, M., et al. Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair. Sci. Rep. 7(1):5246, 2017. https://doi.org/10.1038/s41598-017-05518-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, S. Y. Application of the three-dimensionally printed biodegradable polycaprolactone (PCL) mesh in repair of orbital wall fractures. J. Cranio-Maxillofac. Surg. 47(7):1065–1071, 2019. https://doi.org/10.1016/J.JCMS.2019.03.009.

    Article  Google Scholar 

  42. Lee, C.-Y., S. Sayyar, P. J. Molino, and G. G. Wallace. A robust 3D printed multilayer conductive graphene/polycaprolactone composite electrode. Mater. Chem. Front. 4(6):1664–1670, 2020. https://doi.org/10.1039/C9QM00780F.

    Article  CAS  Google Scholar 

  43. Wan, Z., P. Zhang, Y. Liu, L. Lv, and Y. Zhou. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomater. 101:26–42, 2020. https://doi.org/10.1016/J.ACTBIO.2019.10.038.

    Article  CAS  PubMed  Google Scholar 

  44. Arif, Z. U., M. Y. Khalid, A. Zolfagharian, and M. Bodaghi. 4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives. React. Funct. Polym. 2022. https://doi.org/10.1016/j.reactfunctpolym.2022.105374.

    Article  Google Scholar 

  45. Khalid, M. Y., Z. U. Arif, R. Noroozi, A. Zolfagharian, and M. Bodaghi. 4D printing of shape memory polymer composites: a review on fabrication techniques, applications, and future perspectives. J. Manuf. Process. 81:759–797, 2022.

    Article  Google Scholar 

  46. Arif, Z. U., M. Y. Khalid, W. Ahmed, and H. Arshad. A review on four-dimensional bioprinting in pursuit of advanced tissue engineering applications. Bioprinting. 2022. https://doi.org/10.1016/j.bprint.2022.e00203.

    Article  Google Scholar 

  47. Arif, Z. U., et al. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J. Pharm. Sci. 2023. https://doi.org/10.1016/j.ajps.2023.100812.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mallakpour, S., E. Azadi, and C. M. Hussain. State-of-the-art of 3D printing technology of alginate-based hydrogels—an emerging technique for industrial applications. Adv. Colloid Interface Sci. 293:102436, 2021. https://doi.org/10.1016/j.cis.2021.102436.

    Article  CAS  PubMed  Google Scholar 

  49. Aljohani, W., M. W. Ullah, X. Zhang, and G. Yang. Bioprinting and its applications in tissue engineering and regenerative medicine. Int. J. Biol. Macromol. 107:261–275, 2018. https://doi.org/10.1016/j.ijbiomac.2017.08.171.

    Article  CAS  PubMed  Google Scholar 

  50. Santoni, S., S. G. Gugliandolo, M. Sponchioni, D. Moscatelli, and B. M. Colosimo. 3D bioprinting: current status and trends—a guide to the literature and industrial practice. Bio-Design Manuf. 2021. https://doi.org/10.1007/s42242-021-00165-0.

    Article  Google Scholar 

  51. Litowczenko, J., M. J. Woźniak-Budych, K. Staszak, K. Wieszczycka, S. Jurga, and B. Tylkowski. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact. Mater. 6(8):2412–2438, 2021. https://doi.org/10.1016/j.bioactmat.2021.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Askari, M., M. AfzaliNaniz, M. Kouhi, A. Saberi, A. Zolfagharian, and M. Bodaghi. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater. Sci. 9(3):535–573, 2021. https://doi.org/10.1039/D0BM00973C.

    Article  CAS  PubMed  Google Scholar 

  53. Amukarimi, S., Z. Rezvani, N. Eghtesadi, and M. Mozafari. Smart biomaterials: from 3D printing to 4D bioprinting. Methods. 205:191–199, 2022. https://doi.org/10.1016/j.ymeth.2022.07.006.

    Article  CAS  PubMed  Google Scholar 

  54. Veeman, D., et al. Additive manufacturing of biopolymers for tissue engineering and regenerative medicine: an overview, potential applications, advancements, and trends. Int. J. Polym. Sci. 2021:4907027, 2021. https://doi.org/10.1155/2021/4907027.

    Article  CAS  Google Scholar 

  55. Mehrpouya, M., H. Vahabi, M. Barletta, P. Laheurte, and V. Langlois. Additive manufacturing of polyhydroxyalkanoates (PHAs) biopolymers: materials, printing techniques, and applications. Mater. Sci. Eng. C. 127:112216, 2021. https://doi.org/10.1016/J.MSEC.2021.112216.

    Article  CAS  Google Scholar 

  56. Li, X., et al. 3D-printed biopolymers for tissue engineering application. Int. J. Polym. Sci. 2014:829145, 2014. https://doi.org/10.1155/2014/829145.

    Article  CAS  Google Scholar 

  57. Devi, L., P. Gaba, and H. Chopra. Tailormade drug delivery system: a novel trio concept of 3DP + hydrogel + SLA. J. Drug Deliv. Ther. 100:100, 2019. https://doi.org/10.22270/jddt.v9i4-s.3458.

    Article  CAS  Google Scholar 

  58. Amukarimi, S., and M. Mozafari. 4D bioprinting of tissues and organs. Bioprinting. 23:e00161, 2021. https://doi.org/10.1016/j.bprint.2021.e00161.

    Article  Google Scholar 

  59. Raddatz, L., et al. Additive manufactured customizable labware for biotechnological purposes. Eng. Life Sci. 17(8):931–939, 2017. https://doi.org/10.1002/elsc.201700055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Navarrete-Segado, P., C. Frances, M. Tourbin, C. Tenailleau, B. Duployer, and D. Grossin. Powder bed selective laser process (sintering/melting) applied to tailored calcium phosphate-based powders. Addit. Manuf. 50:102542, 2022. https://doi.org/10.1016/J.ADDMA.2021.102542.

    Article  CAS  Google Scholar 

  61. Noroozi, R., M. A. Shamekhi, R. Mahmoudi, A. Zolfagharian, F. Asgari, A. Mousavizadeh, M. Bodaghi, A. Hadi, and N. Haghighipour. In vitro static and dynamic cell culture study of novel bone scaffolds based on 3D-printed PLA and cell-laden alginate hydrogel. Biomed. Mater. 2022. https://doi.org/10.1088/1748-605X/ac7308.

    Article  PubMed  Google Scholar 

  62. Rajabi, M., M. McConnell, J. Cabral, and M. A. Ali. Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr. Polym. 260:117768, 2021. https://doi.org/10.1016/J.CARBPOL.2021.117768.

    Article  CAS  PubMed  Google Scholar 

  63. Tetsuka, H., and S. R. Shin. Materials and technical innovations in 3D printing in biomedical applications. J. Mater. Chem. B. 8(15):2930–2950, 2020. https://doi.org/10.1039/D0TB00034E.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8):773–785, 2014.

    Article  CAS  PubMed  Google Scholar 

  65. Phillippi, J. A., E. Miller, L. Weiss, J. Huard, A. Waggoner, and P. Campbell. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle-and bone-like subpopulations. Stem Cells. 26(1):127–134, 2008.

    Article  CAS  PubMed  Google Scholar 

  66. Gudapati, H., M. Dey, and I. Ozbolat. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 102:20–42, 2016.

    Article  CAS  PubMed  Google Scholar 

  67. Li, X., et al. Inkjet bioprinting of biomaterials. Chem. Rev. 120(19):10793–10833, 2020. https://doi.org/10.1021/acs.chemrev.0c00008.

    Article  CAS  PubMed  Google Scholar 

  68. Bevis, J. B., S. Dunlavey, and R. Martinez-Duarte. Comparing the performance of different extruders in the Robocasting of biopolymer–nanoparticle composites towards the fabrication of complex geometries of porous Tungsten Carbide. Procedia Manuf. 53:338–342, 2021. https://doi.org/10.1016/J.PROMFG.2021.06.036.

    Article  Google Scholar 

  69. Samaro, A., et al. Can filaments, pellets and powder be used as feedstock to produce highly drug-loaded ethylene-vinyl acetate 3D printed tablets using extrusion-based additive manufacturing? Int. J. Pharm. 607:120922, 2021. https://doi.org/10.1016/J.IJPHARM.2021.120922.

    Article  CAS  PubMed  Google Scholar 

  70. Khalid, M. Y., A. Al Rashid, Z. U. Arif, W. Ahmed, and H. Arshad. Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications. J. Mater. Res. Technol. 14:2601–2623, 2021. https://doi.org/10.1016/J.JMRT.2021.07.128.

    Article  CAS  Google Scholar 

  71. Romani, A., V. Rognoli, and M. Levi. Design, materials, and extrusion-based additive manufacturing in circular economy contexts: from waste to new products. Sustainability. 2021. https://doi.org/10.3390/su13137269.

    Article  Google Scholar 

  72. Khalid, M. Y., A. AlRashid, Z. U. Arif, W. Ahmed, H. Arshad, and A. A. Zaidi. Natural fiber reinforced composites: Sustainable materials for emerging applications. Results Eng. 11:100263–65, 2021. https://doi.org/10.1016/J.RINENG.2021.100263.

    Article  CAS  Google Scholar 

  73. Malda, J., et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25(36):5011–5028, 2013.

    Article  CAS  PubMed  Google Scholar 

  74. Noroozi, R., et al. Additively manufactured multi-morphology bone-like porous scaffolds: experiments and micro-computed tomography-based finite element modeling approaches. Int. J. Bioprint. 8(3):40–53, 2022.

    Article  Google Scholar 

  75. Ghorbani, F., D. Li, S. Ni, Y. Zhou, and B. Yu. 3D printing of acellular scaffolds for bone defect regeneration: a review. Mater. Today Commun. 22:100979, 2020. https://doi.org/10.1016/j.mtcomm.2020.100979.

    Article  CAS  Google Scholar 

  76. Tallapaneni, V., C. Kalaivani, D. Pamu, L. Mude, S. K. Singh, and V. V. S. R. Karri. Acellular scaffolds as innovative biomaterial platforms for the management of diabetic wounds. Tissue Eng. Regen. Med. 18(5):713–734, 2021. https://doi.org/10.1007/s13770-021-00344-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. AlRashid, A., W. Ahmed, M. Y. Khalid, and M. Koç. Vat photopolymerization of polymers and polymer composites: processes and applications. Addit. Manuf. 47:102279–81, 2021. https://doi.org/10.1016/J.ADDMA.2021.102279.

    Article  CAS  Google Scholar 

  78. Prakash, C., et al. Mechanical reliability and in vitro bioactivity of 3D-printed porous polylactic acid-hydroxyapatite scaffold. J. Mater. Eng. Perform. 30(7):4946–4956, 2021. https://doi.org/10.1007/s11665-021-05566-x.

    Article  CAS  Google Scholar 

  79. Dabbagh, S. R., M. R. Sarabi, R. Rahbarghazi, E. Sokullu, A. K. Yetisen, and S. Tasoglu. 3D-printed microneedles in biomedical applications. iScience. 24(1):102012, 2021. https://doi.org/10.1016/J.ISCI.2020.102012.

    Article  CAS  PubMed  Google Scholar 

  80. Moetazedian, A., A. Gleadall, X. Han, and V. V. Silberschmidt. Effect of environment on mechanical properties of 3D printed polylactide for biomedical applications. J. Mech. Behav. Biomed. Mater. 102:103510, 2020. https://doi.org/10.1016/J.JMBBM.2019.103510.

    Article  CAS  PubMed  Google Scholar 

  81. Velu, R., D. K. Jayashankar, and K. Subburaj. Additive processing of biopolymers for medical applications. Addit. Manuf. 2021. https://doi.org/10.1016/B978-0-12-818411-0.00019-7.

    Article  Google Scholar 

  82. Das, S., and B. Basu. An overview of hydrogel-based bioinks for 3D bioprinting of soft tissues. J. Indian Inst. Sci. 99(3):405–428, 2019. https://doi.org/10.1007/s41745-019-00129-5.

    Article  Google Scholar 

  83. F. Olivieri, C. De Capitani, and A. Sorrentino. In: 10 Additive Manufacturing for Biodegradable Polymers, edited by V. Marturano, V. Ambrogi, and P. Cerruti. Berlin: De Gruyter, 2020, pp. 235–252. https://doi.org/10.1515/9783110590586-010.

  84. Ranjan, N., et al. On 3D printed scaffolds for orthopedic tissue engineering applications. SN Appl. Sci. 2(2):192, 2020. https://doi.org/10.1007/s42452-020-1936-8.

    Article  CAS  Google Scholar 

  85. Lee, S. J., et al. In situ gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: in vitro and in vivo studies. Nanoscale. 10(33):15447–15453, 2018. https://doi.org/10.1039/C8NR04037K.

    Article  CAS  PubMed  Google Scholar 

  86. Joung, D., N. S. Lavoie, S.-Z. Guo, S. H. Park, A. M. Parr, and M. C. McAlpine. 3D printed neural regeneration devices. Adv. Funct. Mater. 30(1):1906237, 2020. https://doi.org/10.1002/adfm.201906237.

    Article  CAS  Google Scholar 

  87. Varma, M. V., B. Kandasubramanian, and S. M. Ibrahim. 3D printed scaffolds for biomedical applications. Mater. Chem. Phys. 255:123642, 2020. https://doi.org/10.1016/J.MATCHEMPHYS.2020.123642.

    Article  CAS  Google Scholar 

  88. Stewart, S. A., et al. Development of a biodegradable subcutaneous implant for prolonged drug delivery using 3D printing. Pharmaceutics. 2020. https://doi.org/10.3390/pharmaceutics12020105.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Teramoto, N. Biomacromolecules, biobased and biodegradable polymers (2017–2019). Polymers. 2020. https://doi.org/10.3390/polym12102386.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jeong, H.-J., H. Nam, J. Jang, and S.-J. Lee. 3D bioprinting strategies for the regeneration of functional tubular tissues and organs. Bioengineering. 7(2):32, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Boonlai, W., V. Tantishaiyakul, and N. Hirun. Characterization of κ-carrageenan/methylcellulose/cellulose nanocrystal hydrogels for 3D bioprinting. Polym. Int. 71(2):181–191, 2022. https://doi.org/10.1002/pi.6298.

    Article  CAS  Google Scholar 

  92. Rajput, M., P. Mondal, P. Yadav, and K. Chatterjee. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. Int. J. Biol. Macromol. 202:644–656, 2022. https://doi.org/10.1016/j.ijbiomac.2022.01.081.

    Article  CAS  PubMed  Google Scholar 

  93. Sorkio, A., et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 171:57–71, 2018. https://doi.org/10.1016/j.biomaterials.2018.04.034.

    Article  CAS  PubMed  Google Scholar 

  94. Ouyang, L., J. P. Wojciechowski, J. Tang, Y. Guo, and M. M. Stevens. Tunable microgel-templated porogel (MTP) bioink for 3D bioprinting applications. Adv. Healthc. Mater. 2022. https://doi.org/10.1002/adhm.202200027.

    Article  PubMed  Google Scholar 

  95. Zhong, Z., et al. Rapid 3D bioprinting of a multicellular model recapitulating pterygium microenvironment. Biomaterials. 282:121391, 2022. https://doi.org/10.1016/j.biomaterials.2022.121391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kosik-Kozioł, A., et al. PLA short sub-micron fiber reinforcement of 3D bioprinted alginate constructs for cartilage regeneration. Biofabrication. 9(4):44105, 2017. https://doi.org/10.1088/1758-5090/aa90d7.

    Article  CAS  Google Scholar 

  97. KamdemTamo, A., et al. Development of bioinspired functional chitosan/cellulose nanofiber 3D hydrogel constructs by 3D printing for application in the engineering of mechanically demanding tissues. Polymers. 2021. https://doi.org/10.3390/polym13101663.

    Article  Google Scholar 

  98. Isaacson, A., S. Swioklo, and C. J. Connon. 3D bioprinting of a corneal stroma equivalent. Exp. Eye Res. 173:188–193, 2018. https://doi.org/10.1016/j.exer.2018.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shahabipour, F., et al. Coaxial 3D bioprinting of tri-polymer scaffolds to improve the osteogenic and vasculogenic potential of cells in co-culture models. J. Biomed. Mater. Res. Part A. 2022. https://doi.org/10.1002/jbm.a.37354.

    Article  Google Scholar 

  100. Yu, K., et al. Printability during projection-based 3D bioprinting. Bioact. Mater. 11:254–267, 2022. https://doi.org/10.1016/j.bioactmat.2021.09.021.

    Article  CAS  PubMed  Google Scholar 

  101. Kumar, H., K. Sakthivel, M. G. A. Mohamed, E. Boras, S. R. Shin, and K. Kim. Designing gelatin methacryloyl (GelMA)-based bioinks for visible light stereolithographic 3D biofabrication. Macromol. Biosci. 21(1):2000317–18, 2021.

    Article  CAS  Google Scholar 

  102. Compaan, A. M., K. Christensen, and Y. Huang. Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate. ACS Biomater. Sci. Eng. 3(8):1519–1526, 2017.

    Article  CAS  PubMed  Google Scholar 

  103. Kim, S. H., et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat. Commun. 9(1):1–14, 2018.

    Google Scholar 

  104. Inzana, J. A., et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 35(13):4026–4034, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Keriquel, V., et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci. Rep. 7(1):1–10, 2017.

    Article  CAS  Google Scholar 

  106. Yang, X., Z. Lu, H. Wu, W. Li, L. Zheng, and J. Zhao. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater. Sci. Eng. C. 83:195–201, 2018.

    Article  CAS  Google Scholar 

  107. Neufurth, M., et al. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Biomaterials. 35(31):8810–8819, 2014.

    Article  CAS  PubMed  Google Scholar 

  108. Pimentel, R., et al. Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network. Acta Biomater. 65:174–184, 2018.

    Article  Google Scholar 

  109. Parak, A., P. Pradeep, L. C. du Toit, P. Kumar, Y. E. Choonara, and V. Pillay. Functionalizing bioinks for 3D bioprinting applications. Drug Discov. Today. 24(1):198–205, 2019. https://doi.org/10.1016/j.drudis.2018.09.012.

    Article  CAS  PubMed  Google Scholar 

  110. Dey, M., and I. T. Ozbolat. 3D bioprinting of cells, tissues and organs. Sci. Rep. 10(1):14023, 2020. https://doi.org/10.1038/s41598-020-70086-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kačarević, ŽP., et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials. 2018. https://doi.org/10.3390/ma11112199.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Maia, F. R., A. R. Bastos, J. M. Oliveira, V. M. Correlo, and R. L. Reis. Recent approaches towards bone tissue engineering. Bone. 154:116256, 2022. https://doi.org/10.1016/j.bone.2021.116256.

    Article  CAS  PubMed  Google Scholar 

  113. Li, N., D. Qiao, S. Zhao, Q. Lin, B. Zhang, and F. Xie. 3D printing to innovate biopolymer materials for demanding applications: a review. Mater. Today Chem. 20:100459, 2021. https://doi.org/10.1016/J.MTCHEM.2021.100459.

    Article  CAS  Google Scholar 

  114. Townsend, J. M., E. C. Beck, S. H. Gehrke, C. J. Berkland, and M. S. Detamore. Flow behavior prior to crosslinking: the need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting. Prog. Polym. Sci. 91:126–140, 2019. https://doi.org/10.1016/j.progpolymsci.2019.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gopinathan, J., and I. Noh. Recent trends in bioinks for 3D printing. Biomater. Res. 22(1):11, 2018. https://doi.org/10.1186/s40824-018-0122-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Solis, D. M., and A. Czekanski. 3D and 4D additive manufacturing techniques for vascular-like structures—a review. Bioprinting. 25:e00182, 2022. https://doi.org/10.1016/j.bprint.2021.e00182.

    Article  Google Scholar 

  117. Khalid, M. Y., and Z. U. Arif. Novel biopolymer-based sustainable composites for food packaging applications: a narrative review. Food Packag. Shelf Life. 33:100892, 2022. https://doi.org/10.1016/j.fpsl.2022.100892.

    Article  CAS  Google Scholar 

  118. Sadeghianmaryan, A., S. Naghieh, Z. Yazdanpanah, H. A. Sardroud, N. K. Sharma, L. D. Wilson, and X. Chen. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. Int. J. Biol. Macromol. 204:62–75, 2022.

  119. Akbari, S., A. H. Sakhaei, S. Panjwani, K. Kowsari, and Q. Ge. Shape memory alloy based 3D printed composite actuators with variable stiffness and large reversible deformation. Sensors Actuators A Phys. 321:112598, 2021. https://doi.org/10.1016/J.SNA.2021.112598.

    Article  CAS  Google Scholar 

  120. Hospodiuk, M., M. Dey, D. Sosnoski, and I. T. Ozbolat. The bioink: a comprehensive review on bioprintable materials. Biotechnol. Adv. 35(2):217–239, 2017.

    Article  CAS  PubMed  Google Scholar 

  121. Do, A., B. Khorsand, S. M. Geary, and A. K. Salem. 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater. 4(12):1742–1762, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Melocchi, A., et al. Shape memory materials and 4D printing in pharmaceutics. Adv. Drug Deliv. Rev. 173:216–237, 2021. https://doi.org/10.1016/J.ADDR.2021.03.013.

    Article  CAS  PubMed  Google Scholar 

  123. Farid, M. I., W. Wu, X. Liu, and P. Wang. Additive manufacturing landscape and materials perspective in 4D printing. Int. J. Adv. Manuf. Technol. 115(9):2973–2988, 2021. https://doi.org/10.1007/s00170-021-07233-w.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Arif, Z. U., M. Y. Khalid, M. F. Sheikh, A. Zolfagharian, and M. Bodaghi. Biopolymeric sustainable materials and their emerging applications. J. Environ. Chem. Eng. 2022. https://doi.org/10.1016/j.jece.2022.108159.

    Article  Google Scholar 

  125. Choubar, E. G., M. H. Nasirtabrizi, F. Salimi, N. Sohrabi-gilani, and A. Sadeghianamryan. Fabrication and in vitro characterization of novel co-electrospun polycaprolactone/collagen/polyvinylpyrrolidone nanofibrous scaffolds for bone tissue engineering applications. J. Mater. Res. 37:4140–4152, 2022.

  126. Suo, H., J. Zhang, M. Xu, and L. Wang. Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. Mater. Sci. Eng. C. 123:111963, 2021. https://doi.org/10.1016/j.msec.2021.111963.

    Article  CAS  Google Scholar 

  127. Hong, H., et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials.232:119679, 2020.

    Article  CAS  PubMed  Google Scholar 

  128. Zheng, Z., et al. 3D bioprinting of self-standing silk-based bioink. Adv. Healthc. Mater. 7(6):1701026, 2018.

    Article  Google Scholar 

  129. Golipour, H., E. Ezzatzadeh, and A. Sadeghianmaryan. Investigation of co‐electrospun gelatin: TiO2/polycaprolactone: silk fibroin scaffolds for wound healing applications. J. Appl. Polym. Sci. 139(27):e52505, 2022.

  130. Li, J., and W. Gao. Fabrication and characterization of 3D microtubular collagen scaffolds for peripheral nerve repair. J. Biomater. Appl. 33(4):541–552, 2018.

    Article  CAS  PubMed  Google Scholar 

  131. Zamani, Y., J. Mohammadi, G. Amoabediny, M. N. Helder, B. Zandieh-Doulabi, and J. Klein-Nulend. Bioprinting of alginate-encapsulated pre-osteoblasts in PLGA/β-TCP scaffolds enhances cell retention but impairs osteogenic differentiation compared to cell seeding after 3D-printing. Regen. Eng. Transl. Med. 7(4):485–493, 2021.

    Article  CAS  Google Scholar 

  132. Ngo, T. B., B. S. Spearman, N. Hlavac, and C. E. Schmidt. Three-Dimensional bioprinted hyaluronic acid hydrogel test beds for assessing neural cell responses to competitive growth stimuli. ACS Biomater. Sci. Eng. 6(12):6819–6830, 2020.

    Article  CAS  PubMed  Google Scholar 

  133. Ko, Y.-G., and O. H. Kwon. Reinforced gelatin-methacrylate hydrogels containing poly (lactic-co-glycolic acid) nanofiber fragments for 3D bioprinting. J. Ind. Eng. Chem. 89:147–155, 2020.

    Article  CAS  Google Scholar 

  134. Kupfer, M. E., et al. In situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid. Circ. Res. 127(2):207–224, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mondal, S., et al. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram. Int. 46(3):3443–3455, 2020.

    Article  CAS  Google Scholar 

  136. Lam, T., et al. Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage. J. Biomed. Mater. Res. Part B Appl. Biomater. 107(8):2649–2657, 2019.

    Article  CAS  Google Scholar 

  137. Gorji, M., S. Mazinani, A. R. Faramarzi, S. Ghadimi, M. Kalaee, A. Sadeghianmaryan, and L. D. Wilson. Coating cellulosic material with Ag nanowires to fabricate wearable IR-reflective device for personal thermal management: The role of coating method and loading level. Molecules 26(12):3570, 2021.

  138. Zhu, W., et al. 3D bioprinting mesenchymal stem cell-laden construct with core–shell nanospheres for cartilage tissue engineering. Nanotechnology.29(18):185101, 2018.

    Article  PubMed  Google Scholar 

  139. Xin, S., D. Chimene, J. E. Garza, A. K. Gaharwar, and D. L. Alge. Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting. Biomater. Sci. 7(3):1179–1187, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sun, Y., Y. You, W. Jiang, Q. Wu, B. Wang, and K. Dai. Generating ready-to-implant anisotropic menisci by 3D-bioprinting protein-releasing cell-laden hydrogel–polymer composite scaffold. Appl. Mater. Today.18:100469, 2020.

    Article  Google Scholar 

  141. Jian, Z., et al. 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact. Mater. 6(6):1711–1726, 2021.

    Article  CAS  PubMed  Google Scholar 

  142. Wang, Y., et al. 3D bioprinting of conductive hydrogel for enhanced myogenic differentiation. Regen. Biomater. 8(5):rbab035, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Benwood, C., et al. Natural biomaterials and their use as bioinks for printing tissues. Bioengineering. 2021. https://doi.org/10.3390/bioengineering8020027.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Highley, C. B., C. B. Rodell, and J. A. Burdick. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27(34):5075–5079, 2015.

    Article  CAS  PubMed  Google Scholar 

  145. Göhl, J., K. Markstedt, A. Mark, K. Håkansson, P. Gatenholm, and F. Edelvik. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks. Biofabrication. 10(3):34105, 2018. https://doi.org/10.1088/1758-5090/aac872.

    Article  CAS  Google Scholar 

  146. Webb, B., and B. J. Doyle. Parameter optimization for 3D bioprinting of hydrogels. Bioprinting. 8:8–12, 2017. https://doi.org/10.1016/j.bprint.2017.09.001.

    Article  Google Scholar 

  147. Zhao, Y., Y. Li, S. Mao, W. Sun, and R. Yao. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication. 7(4):45002, 2015. https://doi.org/10.1088/1758-5090/7/4/045002.

    Article  Google Scholar 

  148. Mehboob, A., H. Mehboob, and S. H. Chang. Evaluation of unidirectional BGF/PLA and Mg/PLA biodegradable composites bone plates-scaffolds assembly for critical segmental fractures healing. Compos. Part A Appl. Sci. Manuf. 135:105929, 2020. https://doi.org/10.1016/J.COMPOSITESA.2020.105929.

    Article  CAS  Google Scholar 

  149. Ahn, J. H., et al. 3D-printed biodegradable composite scaffolds with significantly enhanced mechanical properties via the combination of binder jetting and capillary rise infiltration process. Addit. Manuf. 41:101988, 2021. https://doi.org/10.1016/J.ADDMA.2021.101988.

    Article  CAS  Google Scholar 

  150. Chopin-Doroteo, M., E. A. Mandujano-Tinoco, and E. Krötzsch. Tailoring of the rheological properties of bioinks to improve bioprinting and bioassembly for tissue replacement. Biochim. Biophys. Acta Gen. Subj. 1865(2):129782, 2021. https://doi.org/10.1016/j.bbagen.2020.129782.

    Article  CAS  PubMed  Google Scholar 

  151. Di Marzio, N., D. Eglin, T. Serra, and L. Moroni. Bio-Fabrication: convergence of 3D bioprinting and nano-biomaterials in tissue engineering and regenerative medicine. Front. Bioeng. Biotechnol. 2020. https://doi.org/10.3389/fbioe.2020.00326.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Noroozi, R., M. Bodaghi, H. Jafari, A. Zolfagharian, and M. Fotouhi. Shape-adaptive metastructures with variable bandgap regions by 4D printing. Polymers. 2020. https://doi.org/10.3390/polym12030519.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Gorji, M., D. Zarbaf, S. Mazinani, A. S. Noushabadi, M. A. Cella, A. Sadeghianmaryan, and A. Ahmadi. Multiresponsive on-demand drug delivery PMMA-co-PDEAEMA platform based on CO2, electric potential, and pH switchable nanofibrous membranes. J. Biomater. Sci. Polym. Ed. 34(3):351–371, 2023.

  154. Lin, Y., N. Luo, M. Chamas, C. Hu, and S. Grasso. Sustainable high-entropy ceramics for reversible energy storage: a short review. Int. J. Appl. Ceram. Technol. 18(5):1560–1569, 2021. https://doi.org/10.1111/IJAC.13762.

    Article  CAS  Google Scholar 

  155. Huang, J., S. Xia, Z. Li, X. Wu, and J. Ren. Applications of four-dimensional printing in emerging directions: Review and prospects. J. Mater. Sci. Technol. 91:105–120, 2021. https://doi.org/10.1016/j.jmst.2021.02.040.

    Article  Google Scholar 

  156. Wang, Y., and X. Li. 4D printing reversible actuator with strain self-sensing function via structural design. Composites Part B Eng.211:108644, 2021.

    Article  CAS  Google Scholar 

  157. Lai, J., et al. 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose. Mater. Des. 205:109699, 2021. https://doi.org/10.1016/J.MATDES.2021.109699.

    Article  CAS  Google Scholar 

  158. Zandrini, T., S. Florczak, R. Levato, and A. Ovsianikov. Breaking the resolution limits of 3D bioprinting: future opportunities and present challenges. Trends Biotechnol. 2022. https://doi.org/10.1016/j.tibtech.2022.10.009.

    Article  PubMed  Google Scholar 

  159. Zhang, Z., H. He, W. Fu, D. Ji, and S. Ramakrishna. Electro-hydrodynamic direct-writing technology toward patterned ultra-thin fibers: advances materials and applications. Nano Today. 35:100942, 2020. https://doi.org/10.1016/J.NANTOD.2020.100942.

    Article  CAS  Google Scholar 

  160. Wang, X., L. Xu, G. Zheng, J. Jiang, D. Sun, and W. Li. Formation of suspending beads-on-a-string structure in electrohydrodynamic printing process. Mater. Des. 204:109692, 2021. https://doi.org/10.1016/J.MATDES.2021.109692.

    Article  Google Scholar 

  161. Langford, T., A. Mohammed, K. Essa, A. Elshaer, and H. Hassanin. 4D printing of origami structures for minimally invasive surgeries using functional scaffold. Appl. Sci. 2021. https://doi.org/10.3390/app11010332.

    Article  Google Scholar 

  162. Vanaei, S., M. S. Parizi, S. Vanaei, F. Salemizadehparizi, and H. R. Vanaei. An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng. Regen. 2:1–18, 2021. https://doi.org/10.1016/J.ENGREG.2020.12.001.

    Article  Google Scholar 

  163. Yarali, E., R. Noroozi, A. Moallemi, A. Taheri, and M. Baghani. Developing an analytical solution for a thermally tunable soft actuator under finite bending. Mech. Based Des. Struct. Mach. 50(5):1793–1807, 2022.

    Article  Google Scholar 

  164. You, D., et al. 4D printing of multi-responsive membrane for accelerated in vivo bone healing via remote regulation of stem cell fate. Adv. Funct. Mater. 31(40):2103920, 2021. https://doi.org/10.1002/adfm.202103920.

    Article  CAS  Google Scholar 

  165. Lin, C., L. Liu, Y. Liu, and J. Leng. 4D printing of bioinspired absorbable left atrial appendage occluders: a proof-of-concept study. ACS Appl. Mater. Interfaces. 13(11):12668–12678, 2021. https://doi.org/10.1021/acsami.0c17192.

    Article  CAS  PubMed  Google Scholar 

  166. Khalid, M. Y., Z. U. Arif, and W. Ahmed. 4D printing: technological and manufacturing renaissance. Macromol. Mater. Eng. 2022. https://doi.org/10.1002/mame.202200003.

    Article  Google Scholar 

  167. Sadeghianmaryan, A., S. Naghieh, A. Salimi, K. Kabiri, M. A. Cella, and A. Ahmadi. Fabrication of cellulosic nonwoven-based wound dressings coated with CTAB-loaded double network PAMPS/PNaA hydrogels. J. Nat. Fiber. 19(16):12718–12735, 2022.

  168. Roudbarian, N., E. Jebellat, S. Famouri, M. Baniasadi, R. Hedayati, and M. Baghani. Shape-memory polymer metamaterials based on triply periodic minimal surfaces. Eur. J. Mech.96:104676, 2022.

    Article  Google Scholar 

  169. Pirhaji, A., E. Jebellat, N. Roudbarian, K. Mohammadi, M. R. Movahhedy, and M. A. Zaeem. Large deformation of shape-memory polymer-based lattice metamaterials. Int. J. Mech. Sci.232:107593, 2022.

    Article  Google Scholar 

  170. McMahon, S., et al. Bio-resorbable polymer stents: a review of material progress and prospects. Prog. Polym. Sci. 83:79–96, 2018. https://doi.org/10.1016/j.progpolymsci.2018.05.002.

    Article  CAS  Google Scholar 

  171. Barati, A., A. Hadi, M. Z. Nejad, and R. Noroozi. On vibration of bi-directional functionally graded nanobeams under magnetic field. Mech. Based Des. Struct. Mach. 50(2):468–485, 2022.

    Article  Google Scholar 

  172. Saska, S., L. Pilatti, A. Blay, and J. A. Shibli. Bioresorbable Polymers: Advanced Materials and 4D Printing for Tissue Engineering. Polymers. 2021. https://doi.org/10.3390/polym13040563.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Mallakpour, S., F. Tabesh, and C. M. Hussain. A new trend of using poly(vinyl alcohol) in 3D and 4D printing technologies: process and applications. Adv. Colloid Interface Sci. 301:102605, 2022. https://doi.org/10.1016/j.cis.2022.102605.

    Article  CAS  PubMed  Google Scholar 

  174. Holman, H., M. N. Kavarana, and T. K. Rajab. Smart materials in cardiovascular implants: shape memory alloys and shape memory polymers. Artif. Organs. 45(5):454–463, 2021. https://doi.org/10.1111/aor.13851.

    Article  CAS  PubMed  Google Scholar 

  175. Gendviliene, I., et al. Effect of extracellular matrix and dental pulp stem cells on bone regeneration with 3D printed PLA/HA composite scaffolds. Eur. Cells Mater. 41:204–215, 2021. https://doi.org/10.22203/ecm.v041a15.

    Article  CAS  Google Scholar 

  176. Kundu, K., A. Afshar, D. R. Katti, M. Edirisinghe, and K. S. Katti. Composite nanoclay-hydroxyapatite-polymer fiber scaffolds for bone tissue engineering manufactured using pressurized gyration. Compos. Sci. Technol. 202:108598, 2021. https://doi.org/10.1016/J.COMPSCITECH.2020.108598.

    Article  CAS  Google Scholar 

  177. Liu, S., X. Chen, and Y. Zhang. Hydrogels and hydrogel composites for 3D and 4D printing applications. In: 3D and 4D Printing of Polymer Nanocomposite Materials. Processes, Applications and Challenges. Amsterdam: Elsevier, 2019, pp. 427–465.

  178. BinLee, Y., O. Jeon, S. J. Lee, A. Ding, D. Wells, and E. Alsberg. Induction of four-dimensional spatiotemporal geometric transformations in high cell density tissues via shape-changing hydrogels. Adv. Funct. Mater. 31(24):2010104, 2021. https://doi.org/10.1002/adfm.202010104.

    Article  CAS  Google Scholar 

  179. Miao, S., et al. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci. Rep. 6(1):27226, 2016. https://doi.org/10.1038/srep27226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Joharji, L., R. B. Mishra, F. Alam, S. Tytov, F. Al-Modaf, and N. El-Atab. 4D printing: A detailed review of materials, techniques, and applications. Microelectron. Eng. 265:111874, 2022. https://doi.org/10.1016/j.mee.2022.111874.

    Article  CAS  Google Scholar 

  181. Hann, S. Y., H. Cui, M. Nowicki, and L. G. Zhang. 4D printing soft robotics for biomedical applications. Addit. Manuf. 36:101567, 2020. https://doi.org/10.1016/J.ADDMA.2020.101567.

    Article  CAS  Google Scholar 

  182. Podstawczyk, D., M. Nizioł, P. Szymczyk-Ziółkowska, and M. Fiedot-Toboła. Development of thermoinks for 4D direct printing of temperature-induced self-rolling hydrogel actuators. Adv. Funct. Mater. 31(15):2009664, 2021. https://doi.org/10.1002/adfm.202009664.

    Article  CAS  Google Scholar 

  183. Kuang, X., et al. Advances in 4D printing: materials and applications. Adv. Funct. Mater. 29(2):1805290, 2019. https://doi.org/10.1002/adfm.201805290.

    Article  CAS  Google Scholar 

  184. Hoa, S. V., and D. I. Rosca. Formation of letters in the alphabet using 4D printing of composites. Mater. Today Commun. 25:101115, 2020. https://doi.org/10.1016/j.mtcomm.2020.101115.

    Article  CAS  Google Scholar 

  185. Khalid, M. Y., Z. U. Arif, W. Ahmed, R. Umer, A. Zolfagharian, and M. Bodaghi. 4D printing: Technological developments in robotics applications. Sensors Actuators A Phys. 343:113670, 2022. https://doi.org/10.1016/j.sna.2022.113670.

    Article  CAS  Google Scholar 

  186. Derkach, S. R., N. G. Voron’ko, Y. A. Kuchina, and D. S. Kolotova. Modified fish gelatin as an alternative to mammalian gelatin in modern food technologies. Polymers (Basel). 12(12):3051–52, 2020.

    Article  CAS  PubMed  Google Scholar 

  187. Wei, H., S.-X. Cheng, X.-Z. Zhang, and R.-X. Zhuo. Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carriers. Prog. Polym. Sci. 34(9):893–910, 2009.

    Article  CAS  Google Scholar 

  188. Zarek, M., N. Mansour, S. Shapira, and D. Cohn. 4D printing of shape memory-based personalized endoluminal medical devices. Macromol. Rapid Commun. 38(2):1600628, 2017.

    Article  Google Scholar 

  189. Ma, Z., D. M. Nelson, Y. Hong, and W. R. Wagner. Thermally responsive injectable hydrogel incorporating methacrylate-polylactide for hydrolytic lability. Biomacromolecules. 11(7):1873–1881, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang, Y., et al. A programmable, fast-fixing, osteo-regenerative, biomechanically robust bone screw. Acta Biomater. 103:293–305, 2020.

    Article  CAS  PubMed  Google Scholar 

  191. Zhou, P., L. Jiang, D. Xia, J. Wu, Y. Ye, and S. Xu. Nickel–titanium arched shape-memory alloy connector combined with bone grafting in the treatment of scaphoid nonunion. Eur. J. Med. Res. 24(1):1–8, 2019.

    Article  CAS  Google Scholar 

  192. Abed, S., H. R. Bakhsheshi-Rad, H. Yaghoubi, L. Ning, A. Sadeghianmaryan, and X. Chen. Antibacterial activities of zeolite/silver-graphene oxide nanocomposite in bone implants. Mater. Technol. 36(11):660–669, 2021.

  193. R. Luo, J. Wu, N.-D. Dinh, and C.-H. Chen. Gradient porous elastic hydrogels with shape-memory property and anisotropic responses for programmable locomotion. Adv. Funct. Mater. 25(47):7272–7279, 2015. https://doi.org/10.1002/adfm.201503434.

  194. Qi, G., et al. 3D printing of highly stretchable hydrogel with diverse UV curable polymers. Sci. Adv. 7(2):eaba4261, 2022. https://doi.org/10.1126/sciadv.aba4261.

    Article  CAS  Google Scholar 

  195. Nikdel, M., H. Rajabinejad, H. Yaghoubi, E. Mikaeiliagah, M. A. Cella, A. Sadeghianmaryan, and A. Ahmadi. Fabrication of cellulosic nonwoven material coated with polyvinyl alcohol and zinc oxide/mesoporous silica nanoparticles for wound dressing purposes with cephalexin delivery. ECS J. Solid State Sci. Technol. 10(5):057003, 2021.

  196. Bastola, A. K., and M. Hossain. The shape—morphing performance of magnetoactive soft materials. Mater. Des. 211:110172–73, 2021. https://doi.org/10.1016/j.matdes.2021.110172.

    Article  Google Scholar 

  197. Filipcsei, G., I. Csetneki, A. Szilágyi, and M. Zrínyi. Magnetic field-responsive smart polymer composites. In Oligomers—Polymer Composites—Molecular Imprinting. Berlin: Springer, 2007, pp. 137–189.

  198. Lucarini, S., M. Hossain, and D. Garcia-Gonzalez. Recent advances in hard-magnetic soft composites: Synthesis, characterisation, computational modelling, and applications. Compos. Struct. 279:114800, 2022. https://doi.org/10.1016/j.compstruct.2021.114800.

    Article  Google Scholar 

  199. Morouço, P., W. Lattanzi, and N. Alves. Four-dimensional bioprinting as a new era for tissue engineering and regenerative medicine. Front. Bioeng. Biotechnol. 5:61, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Zhang, Q., J. Liu, K. Yuan, Z. Zhang, X. Zhang, and X. Fang. A multi-controlled drug delivery system based on magnetic mesoporous Fe3O4 nanopaticles and a phase change material for cancer thermo-chemotherapy. Nanotechnology.28(40):405101, 2017.

    Article  PubMed  Google Scholar 

  201. Lalitha, K., Y. S. Prasad, V. Sridharan, C. U. Maheswari, G. John, and S. Nagarajan. A renewable resource-derived thixotropic self-assembled supramolecular gel: magnetic stimuli responsive and real-time self-healing behaviour. RSC Adv. 5(95):77589–77594, 2015.

    Article  CAS  Google Scholar 

  202. Kim, C., H. Kim, H. Park, and K. Y. Lee. Controlling the porous structure of alginate ferrogel for anticancer drug delivery under magnetic stimulation. Carbohydr. Polym.223:115045, 2019.

    Article  CAS  PubMed  Google Scholar 

  203. Zhang, Y., et al. 4D printing of magnetoactive soft materials for on-demand magnetic actuation transformation. ACS Appl. Mater. Interfaces. 13(3):4174–4184, 2021. https://doi.org/10.1021/acsami.0c19280.

    Article  CAS  PubMed  Google Scholar 

  204. Antman-Passig, M., and O. Shefi. Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Lett. 16(4):2567–2573, 2016.

    Article  CAS  PubMed  Google Scholar 

  205. Chen, Z., et al. 3D printing of multifunctional hydrogels. Adv. Funct. Mater. 29(20):1900971, 2019.

    Article  Google Scholar 

  206. Kocak, G., C. Tuncer, and V. Bütün. pH-Responsive polymers. Polym. Chem. 8(1):144–176, 2017.

    Article  CAS  Google Scholar 

  207. Lui, Y. S., W. T. Sow, L. P. Tan, Y. Wu, Y. Lai, and H. Li. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater. 92:19–36, 2019.

    Article  CAS  PubMed  Google Scholar 

  208. Ashammakhi, N., et al. Advances and future perspectives in 4D bioprinting. Biotechnol. J. 13(12):1800148, 2018.

    Article  Google Scholar 

  209. Mirani, B., et al. An advanced multifunctional hydrogel-based dressing for wound monitoring and drug delivery. Adv. Healthc. Mater. 6(19):1700718, 2017.

    Article  Google Scholar 

  210. Sadeghianmaryan, A., D. Zarbaf, M. Montazer, and M. MahmoudiRad. Green synthesis of organomontmorillonite/ silver nanocomposites on dyed cotton with vat dyes to achieve biocompatible antibacterial properties on fashionable clothing. J. Nat. Fiber. 19(15):10253–10268, 2022.

  211. Ding, H., et al. pH-responsive UV crosslinkable chitosan hydrogel via ‘thiol-ene’ click chemistry for active modulating opposite drug release behaviors. Carbohydr. Polym.251:117101, 2021.

    Article  CAS  PubMed  Google Scholar 

  212. Mostafalu, P., et al. Smart bandage for monitoring and treatment of chronic wounds. Small. 14(33):1703509, 2018. https://doi.org/10.1002/smll.201703509.

    Article  CAS  Google Scholar 

  213. Hu, Y., et al. Botanical-inspired 4D printing of hydrogel at the microscale. Adv. Funct. Mater. 30(4):1907377, 2020.

    Article  CAS  Google Scholar 

  214. de Haan, L. T., J. M. N. Verjans, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning. Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. J. Am. Chem. Soc. 136(30):10585–10588, 2014.

    Article  PubMed  Google Scholar 

  215. Correia, C. O., and J. F. Mano. Chitosan scaffolds with a shape memory effect induced by hydration. J. Mater. Chem. B. 2(21):3315–3323, 2014.

    Article  CAS  PubMed  Google Scholar 

  216. Kim, S. H., et al. 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials.260:120281, 2020.

    Article  CAS  PubMed  Google Scholar 

  217. Feringa, B. L., R. A. van Delden, N. Koumura, and E. M. Geertsema. Chiroptical molecular switches. Chem. Rev. 100(5):1789–1816, 2000.

    Article  CAS  PubMed  Google Scholar 

  218. Bagheri, A., H. Arandiyan, C. Boyer, and M. Lim. Lanthanide-doped upconversion nanoparticles: emerging intelligent light-activated drug delivery systems. Adv. Sci. 3(7):1500437, 2016.

    Article  Google Scholar 

  219. Lendlein, A., H. Jiang, O. Jünger, and R. Langer. Light-induced shape-memory polymers. Nature. 434(7035):879–882, 2005.

    Article  CAS  PubMed  Google Scholar 

  220. Wei, H., Q. Zhang, Y. Yao, L. Liu, Y. Liu, and J. Leng. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl. Mater. Interfaces. 9(1):876–883, 2017.

    Article  CAS  PubMed  Google Scholar 

  221. Choi, J., O.-C. Kwon, W. Jo, H. J. Lee, and M.-W. Moon. 4D printing technology: a review. 3D Print. Addit. Manuf. 2(4):159–167, 2015.

    Article  Google Scholar 

  222. Bedell, M. L., A. M. Navara, Y. Du, S. Zhang, and A. G. Mikos. Polymeric systems for bioprinting. Chem. Rev. 120(19):10744–10792, 2020.

    Article  CAS  PubMed  Google Scholar 

  223. Ding, A., S. J. Lee, S. Ayyagari, R. Tang, C. T. Huynh, and E. Alsberg. 4D biofabrication via instantly generated graded hydrogel scaffolds. Bioact. Mater. 7:324–332, 2022. https://doi.org/10.1016/J.BIOACTMAT.2021.05.021.

    Article  CAS  PubMed  Google Scholar 

  224. Kirillova, A., R. Maxson, G. Stoychev, C. T. Gomillion, and L. Ionov. 4D biofabrication using shape-morphing hydrogels. Adv. Mater. 29(46):1703443, 2017.  https://doi.org/10.1002/adma.201703443

    Article  CAS  Google Scholar 

  225. Jeong, H. Y., B. H. Woo, N. Kim, and Y. C. Jun. Multicolor 4D printing of shape-memory polymers for light-induced selective heating and remote actuation. Sci. Rep. 10(1):6258, 2020. https://doi.org/10.1038/s41598-020-63020-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Boruah, M., M. Mili, S. Sharma, B. Gogoi, and S. Kumar Dolui. Synthesis and evaluation of swelling kinetics of electric field responsive poly (vinyl alcohol)-G-polyacrylic acid/OMNT nanocomposite hydrogels. Polym. Compos. 36(1):34–41, 2015.

    Article  CAS  Google Scholar 

  227. Green, R. A., S. Baek, L. A. Poole-Warren, and P. J. Martens. Conducting polymer-hydrogels for medical electrode applications. Sci. Technol. Adv. Mater. 11(1):14107, 2010.

    Article  Google Scholar 

  228. Shin, S. R., et al. A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. Adv. Mater. 28(17):3280–3289, 2016. https://doi.org/10.1002/adma.201506420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Noroozi, R., A. Zolfagharian, M. Fotouhi, and M. Bodaghi. 7–4D-printed shape memory polymer: Modeling and fabrication. In: Additive Manufacturing Materials and Technologies, edited by M. Bodaghi, and A. M. Zolfagharian. Amsterdam: Elsevier, 2022, pp. 195–228. https://doi.org/10.1016/B978-0-323-95430-3.00007-5.

    Chapter  Google Scholar 

  230. Zhang, F., L. Wang, Z. Zheng, Y. Liu, and J. Leng. Magnetic Programming of 4D Printed Shape Memory Composite Structures. Amsterdam: Elsevier, 2019.

    Book  Google Scholar 

  231. S. Miao et al.. 4D self‐morphing culture substrate for modulating cell differentiation. Adv. Sci., vol. 7(6), p. 1902403, 2020.

  232. Wang, C., et al. Advanced reconfigurable scaffolds fabricated by 4D printing for treating critical-size bone defects of irregular shapes. Biofabrication. 12(4):45025, 2020. https://doi.org/10.1088/1758-5090/abab5b.

    Article  CAS  Google Scholar 

  233. Yang, C., et al. 4D-printed transformable tube array for high-throughput 3d cell culture and histology. Adv. Mater. 32(40):2004285, 2020.

    Article  CAS  Google Scholar 

  234. Lu, L., T. Tian, S. Wu, T. Xiang, and S. Zhou. A pH-induced self-healable shape memory hydrogel with metal-coordination cross-links. Polym. Chem. 10(15):1920–1929, 2019.

    Article  CAS  Google Scholar 

  235. Cimen, Z., S. Babadag, S. Odabas, S. Altuntas, G. Demirel, and G. B. Demirel. Injectable and self-healable pH-responsive gelatin–PEG/laponite hybrid hydrogels as long-acting implants for local cancer treatment. ACS Appl. Polym. Mater. 3(7):3504–3518, 2021. https://doi.org/10.1021/acsapm.1c00419.

    Article  CAS  Google Scholar 

  236. Zhu, P., W. Yang, R. Wang, S. Gao, B. Li, and Q. Li. 4D printing of complex structures with a fast response time to magnetic stimulus. ACS Appl. Mater. Interfaces. 10(42):36435–36442, 2018.

    Article  CAS  PubMed  Google Scholar 

  237. Zhang, F., N. Wen, L. Wang, Y. Bai, and J. Leng. Design of 4D printed shape-changing tracheal stent and remote controlling actuation. Int. J. Smart Nano Mater. 2021. https://doi.org/10.1080/19475411.2021.1974972.

    Article  Google Scholar 

  238. Shin, B. Y., B. G. Cha, J. H. Jeong, and J. Kim. Injectable macroporous ferrogel microbeads with a high structural stability for magnetically actuated drug delivery. ACS Appl. Mater. Interfaces. 9(37):31372–31380, 2017.

    Article  CAS  PubMed  Google Scholar 

  239. Sydney Gladman, A., E. A. Matsumoto, R. G. Nuzzo, L. Mahadevan, and J. A. Lewis. Biomimetic 4D printing. Nat. Mater. 15(4):413–418, 2016.

    Article  CAS  PubMed  Google Scholar 

  240. Liu, Y., Y. Li, G. Yang, X. Zheng, and S. Zhou. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl. Mater. Interfaces. 7(7):4118–4126, 2015.

    Article  CAS  PubMed  Google Scholar 

  241. Lv, C., et al. Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing. Sensors Actuators B Chem. 259:736–744, 2018.

    Article  CAS  Google Scholar 

  242. Diba, M., G. L. Koons, M. L. Bedell, and A. G. Mikos. 3D printed colloidal biomaterials based on photo-reactive gelatin nanoparticles. Biomaterials.274:120871, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wang, Y., et al. 4D printed cardiac construct with aligned myofibers and adjustable curvature for myocardial regeneration. ACS Appl. Mater. Interfaces. 13(11):12746–12758, 2021. https://doi.org/10.1021/acsami.0c17610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Wang, E., M. S. Desai, and S.-W. Lee. Light-controlled graphene-elastin composite hydrogel actuators. Nano Lett. 13(6):2826–2830, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Szymczyk-Ziółkowska, P., M. B. Łabowska, J. Detyna, I. Michalak, and P. Gruber. A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques. Biocybern. Biomed. Eng. 40(2):624–638, 2020. https://doi.org/10.1016/j.bbe.2020.01.015.

    Article  Google Scholar 

  246. Ehsani, A., A. Asefnejad, A. Sadeghianmaryan, H. Rajabinejad, and X. Chen. Fabrication of wound dressing cotton nano-composite coated with Tragacanth/Polyvinyl alcohol: Characterization and in vitro studies. ECS J. Solid State Sci. Technol. 10(1):013002, 2021.

  247. Jariwala, S. H., G. S. Lewis, Z. J. Bushman, J. H. Adair, and H. J. Donahue. 3D printing of personalized artificial bone scaffolds. 3D Print. Addit. Manuf. 2(2):56–64, 2015. https://doi.org/10.1089/3dp.2015.0001.

    Article  PubMed  Google Scholar 

  248. Datta, P., V. Vyas, S. Dhara, A. R. Chowdhury, and A. Barui. Anisotropy properties of tissues: a basis for fabrication of biomimetic anisotropic scaffolds for tissue engineering. J. Bionic Eng. 16(5):842–868, 2019. https://doi.org/10.1007/s42235-019-0101-9.

    Article  Google Scholar 

  249. Tenje, M., et al. A practical guide to microfabrication and patterning of hydrogels for biomimetic cell culture scaffolds. Organs-on-a-Chip. 2:100003, 2020. https://doi.org/10.1016/j.ooc.2020.100003.

    Article  Google Scholar 

  250. Ermis, M., E. Antmen, and V. Hasirci. Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: a review from the tissue engineering perspective. Bioact. Mater. 3(3):355–369, 2018. https://doi.org/10.1016/j.bioactmat.2018.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Jovic, T. H., E. J. Combellack, Z. M. Jessop, and I. S. Whitaker. 3D bioprinting and the future of surgery. Front. Surg. 2020. https://doi.org/10.3389/fsurg.2020.609836.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Hull, S. M., L. G. Brunel, and S. C. Heilshorn. 3d bioprinting of cell-laden hydrogels for improved biological functionality. Adv. Mater. 34(2):2103691, 2022. https://doi.org/10.1002/adma.202103691.

    Article  CAS  Google Scholar 

  253. Zhang, Y. S., et al. 3D bioprinting for tissue and organ fabrication. Ann. Biomed. Eng. 45(1):148–163, 2017. https://doi.org/10.1007/s10439-016-1612-8.

    Article  CAS  PubMed  Google Scholar 

  254. Seepersad, C. C. Challenges and opportunities in design for additive manufacturing. 3D Print. Addit. Manuf. 1(1):10–13, 2014. https://doi.org/10.1089/3dp.2013.0006.

    Article  Google Scholar 

  255. Kaufmann, T., and B. J. Ravoo. Stamps, inks and substrates: polymers in microcontact printing. Polym. Chem. 1(4):371–387, 2010. https://doi.org/10.1039/B9PY00281B.

    Article  CAS  Google Scholar 

  256. An, J., C. K. Chua, and V. Mironov. Application of machine learning in 3D bioprinting: focus on development of big data and digital twin. Int. J. Bioprint. 7(1):342, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Rastogi, P., and B. Kandasubramanian. Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. Chem. Eng. J. 366:264–304, 2019. https://doi.org/10.1016/j.cej.2019.02.085.

    Article  CAS  Google Scholar 

  258. Naveau, A., R. Smirani, S. Catros, H. De Oliveira, J.-C. Fricain, and R. Devillard. A bibliometric study to assess bioprinting evolution. Appl. Sci. 2017. https://doi.org/10.3390/app7121331.

    Article  Google Scholar 

  259. Wu, C., B. Wang, C. Zhang, R. A. Wysk, and Y.-W. Chen. Bioprinting: an assessment based on manufacturing readiness levels. Crit. Rev. Biotechnol. 37(3):333–354, 2017. https://doi.org/10.3109/07388551.2016.1163321.

    Article  CAS  PubMed  Google Scholar 

  260. Abdollahi, S., J. Boktor, and N. Hibino. Bioprinting of freestanding vascular grafts and the regulatory considerations for additively manufactured vascular prostheses. Transl. Res. 211:123–138, 2019. https://doi.org/10.1016/j.trsl.2019.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Gilbert, F., C. D. O’Connell, T. Mladenovska, and S. Dodds. Print me an organ? Ethical and regulatory issues emerging from 3D bioprinting in medicine. Sci. Eng. Ethics. 24(1):73–91, 2018. https://doi.org/10.1007/s11948-017-9874-6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Sadeghianmaryan.

Ethics declarations

Conflict of interest

The corresponding author, Ali Sadeghianmaryan, declares that there is no conflict of interest regarding the publication of this paper in Annals of Biomedical Engineering. The author has not received any financial support or funding from any organizations or individuals that may pose a conflict of interest. The author has not had any close personal or professional relationships with any organizations or individuals that may pose a conflict of interest. The author has not received any personal gain, such as honoraria or paid consultancies, from any organizations or individuals that may pose a conflict of interest. The author has not been involved in any other activities that may pose a conflict of interest. The author is committed to maintaining the integrity and objectivity of the work and ensuring that any potential conflicts of interest are fully disclosed.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noroozi, R., Arif, Z., Taghvaei, H. et al. 3D and 4D Bioprinting Technologies: A Game Changer for the Biomedical Sector?. Ann Biomed Eng 51, 1683–1712 (2023). https://doi.org/10.1007/s10439-023-03243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03243-9

Keywords

Navigation