Skip to main content
Log in

A Shoulder Musculoskeletal Model with Three-Dimensional Complex Muscle Geometries

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Muscle structure is an essential component in typical computational models of the musculoskeletal system. Almost all musculoskeletal models represent muscle geometry using a set of line segments. The straight-line approach limits models’ ability to accurately predict the paths of muscles with complex geometry. This approach needs knowledge of how the muscle changes shape and interacts with fundamental structures like muscles, bones, and joints that move. Moreover, the moment arms are supposed to be equivalent to all the fibers in the muscle. This study aims to create a shoulder musculoskeletal model that includes complex muscle geometries. We reconstructed the shape of fibers in the entire volume of six muscles adjacent to the shoulder using an automated technique. This method generates many fibers from the surface geometry of the skeletal muscle and its attachment areas. Highly discretized muscle representations for all muscles were created and used to simulate different shoulder movements. The moment arms of each muscle were calculated and validated against cadaveric measurements and models of the same muscles from the literature. We found that simulations using the developed musculoskeletal models generated more realistic geometries, which expands the physical representation of muscles compared to line segments. The shoulder musculoskeletal model with complex muscle geometry is created to increase the anatomical reality of models and the lines action of muscle fibers, and to be used for finite element investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ackland, D. C., P. Pak, M. Richardson, and M. G. Pandy. Moment arms of the muscles crossing the anatomical shoulder. J. Anat. 213(4):383–390, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  2. An, K. N., K. Takahashi, T. P. Harrigan, and E. Y. Chao. Determination of muscle orientations and moment arms. J. Biomech. Eng. 106:280–282, 1984.

    Article  CAS  PubMed  Google Scholar 

  3. Assila, N., S. Duprey, and M. Begon. Glenohumeral joint and muscles functions during a lifting task. J. Biomech. 126:110641, 2021.

    Article  PubMed  Google Scholar 

  4. Blemker, S. S., and S. L. Delp. Three-dimensional representation of complex muscle architectures and geometries. Ann. Biomed. Eng. 33:661–673, 2005.

    Article  PubMed  Google Scholar 

  5. Charlton, I. W., and G. R. Johnson. A model for the prediction of the forces at the glenohumeral joint. Inst. Mech. Eng. H. 220:801–812, 2015.

    Article  Google Scholar 

  6. Damsgaard, M., J. Rasmussen, S. T. Christensen, E. Surma, and M. de Zee. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul. Model. Pract. Theory. 14:1100–1111, 2006.

    Article  Google Scholar 

  7. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  8. Garner, B. A., and M. G. Pandy. A kinematic model of the upper limb based on the visible human project (VHP) image dataset. Comput. Methods Biomech. Biomed. Eng. 2:107–124, 1999.

    Article  Google Scholar 

  9. Garner, B. A., and M. G. Pandy. The obstacle-set method for representing muscle paths in musculoskeletal models. Comput. Methods Biomech. Biomed. Eng. 3:1–30, 2000.

    Article  Google Scholar 

  10. Hawkins, D., and A. Barr. A computational approach for simulating muscle morphologic changes in musculoskeletal modeling. Comput. Methods Biomech. Biomed. Eng. 4:399–411, 2001.

    Article  Google Scholar 

  11. Hoffmann, M., D. Haering, and M. Begon. Comparison between line and surface mesh models to represent the rotator cuff muscle geometry in musculoskeletal models. Comput. Methods Biomech. Biomed. Eng. 20:1175–1181, 2017.

    Article  Google Scholar 

  12. Holzbaur, K. R. S., W. M. Murray, and S. L. Delp. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed Eng. 33:829–840, 2005.

    Article  PubMed  Google Scholar 

  13. John, C. T. Complete Description of the Thelen2003Muscle Model. Stanford: OpenSim, 2011.

  14. Kohout, J., and D. Cholt. Computer Methods and Programs in Biomedicine Automatic reconstruction of the muscle architecture from the superficial layer fibres data. Comput. Methods Programs Biomed. 150:85–95, 2017.

    Article  PubMed  Google Scholar 

  15. Kohout, J., G. J. Clapworthy, Y. Zhao, Y. Tao, F. Dong, H. Wei, and E. Kohoutova. Patient-specific fibre-based models of muscle wrapping. Interface Focus. 3:20120062, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kohout, J., and M. Kukačka. Real-time modelling of fibrous muscle. Comput. Graph. Forum. 33:1–15, 2014.

    Article  Google Scholar 

  17. Kuechle, D. K., S. R. Newman, E. Itoi, B. F. Morrey, and K. N. An. Shoulder muscle moment arms during horizontal flexion and elevation. J. Shoulder Elbow Surg. 6(5):429–439, 1997.

    Article  CAS  PubMed  Google Scholar 

  18. Kuechle, D. K., S. R. Newman, E. Itoi, G. L. Niebur, B. F. Morrey, and K. N. An. The relevance of the moment arm of shoulder muscles with respect to axial rotation of the glenohumeral joint in four positions. Clin. Biomech. 15:322–329, 2000.

    Article  CAS  Google Scholar 

  19. Lang, A. E., J. H. Lin, and C. R. Dickerson. Activation patterns of shoulder internal and external rotators during pure axial moment generation across a postural range. J. Biomech.123:110503, 2021.

    Article  PubMed  Google Scholar 

  20. Lieber, R. L., and J. Fridén. Clinical significance of skeletal muscle architecture. Clin. Orthopaed. Relat. Res. 383:140–151, 2001.

    Article  Google Scholar 

  21. Liu, J., R. E. Hughes, W. P. Smutz, G. Niebur, and K. Nan-An. Roles of deltoid and rotator cuff muscles in shoulder elevation. Clin. Biomech. 12:32–38, 1997.

    Article  CAS  Google Scholar 

  22. Ludewig, P. M., V. Phadke, J. P. Braman, D. R. Hassett, C. J. Cieminski, and R. F. Laprade. Motion of the shoulder complex during multiplanar humeral elevation. J. Bone Jt. Surg. Ser. A. 91:378–389, 2009.

    Article  Google Scholar 

  23. Mathai, B., and S. Gupta. Numerical predictions of hip joint and muscle forces during daily activities: A comparison of musculoskeletal models. Proc. Inst. Mech. Eng. 233:636–647, 2019.

    Article  Google Scholar 

  24. Modenese, L., and J. Kohout. Automatic generation of personalised skeletal models of the lower limb from three-dimensional bone geometries. Ann. Biomed. Eng. 116:110186, 2020.

    Google Scholar 

  25. Mohr, A., and M. Gleicher. Building efficient, accurate character skins from examples. ACM Trans. Graph. 22(3):562–568, 2003.

    Article  Google Scholar 

  26. Mulla, D. M., J. N. Hodder, M. R. Maly, J. L. Lyons, and P. J. Keir. Modeling the effects of musculoskeletal geometry on scapulohumeral muscle moment arms and lines of action. Comput. Methods Biomech. Biomed. Eng. 22:1311–1322, 2019.

    Article  Google Scholar 

  27. Otis, J. C., C. C. Jiang, T. L. Wickiewicz, M. G. E. Peterson, R. F. Warren, and T. J. Santner. Changes in the moment arms of the rotator cuff and deltoid muscles with abduction and rotation. J. Bone Jt. Surg. 76:667–676, 1994.

    Article  CAS  Google Scholar 

  28. Péan, F., C. Tanner, C. Gerber, and P. Fürnstahl. A comprehensive and volumetric musculoskeletal model for the dynamic simulation of the shoulder function. Comput. Methods Biomech. Biomed. Eng. 22:740–751, 2019.

    Article  Google Scholar 

  29. Reilly, M., and K. Kontson. Computational musculoskeletal modeling of compensatory movements in the upper limb. J. Biomech.108:109843, 2020.

    Article  PubMed  Google Scholar 

  30. Saul, K. R., X. Hu, C. M. Goehler, M. E. Vidt, M. Daly, A. Velisar, and W. M. Murray. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model. Comput. Methods Biomech. Biomed. Eng. 18:1445–1458, 2014.

    Article  Google Scholar 

  31. Seth, A., M. Dong, R. Matias, and S. Delp. Muscle contributions to upper-extremity movement and work from a musculoskeletal model of the human shoulder. Front. Neurorobot. 13:90, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Seth, A., J. L. Hicks, T. K. Uchida, A. Habib, L. Dembia, J. J. Dunne, C. F. Ong, M. S. Demers, A. Rajagopal, M. Millard, S. R. Hamner, E. M. Arnold, R. Yong, S. K. Lakshmikanth, M. A. Sherman, J. P. Ku, and S. L. Delp. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. 14(7):e1006223–e1006224, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Seth, A., R. Matias, A. P. Veloso, and S. L. Delp. A biomechanical model of the scapulothoracic joint to accurately capture scapular kinematics during shoulder movements. PLoS ONE. 11:1–18, 2016.

    Article  CAS  Google Scholar 

  34. Seth, A., M. Sherman, P. Eastman, and S. Delp. Minimal formulation of joint motion for biomechanisms. Nonlinear Dyn. 62:291–303, 2010. https://doi.org/10.1007/s11071-010-9717-3.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Valente, G., G. Crimi, N. Vanella, E. Schileo, and F. Taddei. NMSBUILDER: freeware to create subject-specific musculoskeletal models for OpenSim. Comput. Methods Prog. Biomed. 152:85–92, 2017.

    Article  Google Scholar 

  36. Inman, V. T., J. D. M. Saunders, and L. C. Abbott. Observations of the function of the shoulder joint. J. Bone Jt. Surg. 26(1):1–30, 1944.

    Google Scholar 

  37. Webb, J. D., P. Taylor, S. S. Blemker, and S. L. Delp. 3D finite element models of shoulder muscles for computing lines of actions and moment arms. Comput. Methods Biomech. Biomed. Eng. 17(8):829–837, 2014.

    Article  Google Scholar 

  38. Weinhandl, J. T., and H. J. Bennett. Musculoskeletal model choice influences hip joint load estimations during gait. J. Biomech. 91:124–132, 2019.

    Article  PubMed  Google Scholar 

  39. de Wilde, L., E. Audenaert, E. Barbaix, A. Audenaert, and K. Soudan. Consequences of deltoid muscle elongation on deltoid muscle performance: a computerised study. Clin. Biomech. 17:499–505, 2002.

    Article  Google Scholar 

  40. Wu, G., F. C. T. van der Helm, H. E. J. Veeger, M. Makhsous, P. van Roy, C. Anglin, J. Nagels, A. R. Karduna, K. McQuade, X. Wang, F. W. Werner, and B. Buchholz. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J. Biomech. 38:981–992, 2005.

    Article  CAS  PubMed  Google Scholar 

  41. Xiao, M., and J. Higginson. Sensitivity of estimated muscle force in forward simulation of normal walking. J. Appl. Biomech. 26(2):142–149, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the staff of the Mechanical System Design Laboratory-EMP.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelghani May.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Associate Editor Jillian Urban oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 720 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kedadria, A., Benabid, Y., Remil, O. et al. A Shoulder Musculoskeletal Model with Three-Dimensional Complex Muscle Geometries. Ann Biomed Eng 51, 1079–1093 (2023). https://doi.org/10.1007/s10439-023-03189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03189-y

Keywords

Navigation