Skip to main content

Advertisement

Log in

Distinct Temporal Pattern of the Prediction of Lumen Remodeling of Lower Extremity Vein Bypass Grafts by Initial Local Hemodynamics

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We predicted human lower extremity vein bypass graft remodeling by hemodynamics. Computed tomography and duplex ultrasound scans of 55 patients were performed at 1 week and 1, 6, and 12 months post-implantation to obtain wall shear stress (WSS) and oscillatory shear index (OSI) at 1-mm intervals via computational fluid dynamics simulations. Graft remodeling was quantified by computed tomography-measured lumen diameter changes in the early (1 week-1 month), intermediate (1–6 months), and late (6–12 months) periods. Linear mixed-effect models were constructed to examine the overall relationship between remodeling and initial hemodynamics using the average data of all cross sections within the same graft. A significant association of graft remodeling with WSS (p < 0.001) and time (p = 0.001) was found; however, the effect size decreased with time (every 2.7 dyne/cm2 increase of WSS was associated with a 0.39, 0.35, 0.002 mm diameter increase in the three periods, respectively). The association of remodeling with OSI was significant only in the intermediate period (every 0.1 increase of OSI was associated with a 0.25 mm lumen diameter decrease, p = 0.004). Therefore, the association of graft lumen remodeling with local hemodynamics has a distinct temporal pattern; WSS and OSI are predictive of remodeling only in certain postoperative periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Colombo, M., Y. He, A. Corti, D. Gallo, F. Ninno, S. Casarin, J. M. Rozowsky, F. Migliavacca, S. Berceli, and C. Chiastra. In-stent restenosis progression in human superficial femoral arteries: dynamics of lumen remodeling and impact of local hemodynamics. Ann. Biomed. Eng. 49:2349–2364, 2021.

    Article  Google Scholar 

  2. Dobrin, P. B. Mechanical factors associated with the development of intimal and medial thickening in vein grafts subjected to arterial pressure. A model of arteries exposed to hypertension. Hypertension. 26:38–43, 1995.

    Article  CAS  Google Scholar 

  3. Donadoni, F., C. Pichardo-Almarza, S. Homer-Vanniasinkam, A. Dardik, and V. Diaz-Zuccarini. Multiscale, patient-specific computational fluid dynamics models predict formation of neointimal hyperplasia in saphenous vein grafts. J. Vasc. Surg. Cases. Innov. Tech. 6:292–306, 2020.

    Article  Google Scholar 

  4. Fillinger, M. F., J. L. Cronenwett, S. Besso, D. B. Walsh, and R. M. Zwolak. Vein adaptation to the hemodynamic environment of infrainguinal grafts. J. Vasc. Surg. 19:970–978, 1994.

    Article  CAS  Google Scholar 

  5. Fledderus, J. O., R. A. Boon, O. L. Volger, H. Hurttila, S. Yla-Herttuala, H. Pannekoek, A.-L. Levonen, and A. J. G. Horrevoets. KLF2 Primes the antioxidant transcription factor Nrf2 for activation in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28:1339–1346, 2008.

    Article  CAS  Google Scholar 

  6. Fledderus, J. O., J. V. van Thienen, R. A. Boon, R. J. Dekker, J. Rohlena, O. L. Volger, A.-P.J.J. Bijnens, M. J. A. P. Daemen, J. Kuiper, T. J. C. van Berkel, H. Pannekoek, and A. J. G. Horrevoets. Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood. 109:4249–4257, 2007.

    Article  CAS  Google Scholar 

  7. Garbey, M., and S. A. Berceli. A dynamical system that describes vein graft adaptation and failure. J. Theor. Biol. 336:209–220, 2013.

    Article  Google Scholar 

  8. Glagov, S. Intimal hyperplasia, vascular modeling, and the restenosis problem. Circulation. 89:2888–2891, 1994.

    Article  CAS  Google Scholar 

  9. Gusic, R. J., R. Myung, M. Petko, J. W. Gaynor, and K. J. Gooch. Shear stress and pressure modulate saphenous vein remodeling ex vivo. J. Biomech. 38:1760–1769, 2005.

    Article  Google Scholar 

  10. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118:74–82, 1996.

    Article  CAS  Google Scholar 

  11. He, Y., K. DeSart, P. S. Kubilis, A. Irwin, R. Tran-Son-Tay, P. R. Nelson, and S. A. Berceli. Heterogeneous and dynamic lumen remodeling of the entire infrainguinal vein bypass grafts in patients. J. Vasc. Surg. 71:1620, 2020.

    Article  Google Scholar 

  12. He, Y., C. M. Fernandez, Z. Jiang, M. Tao, K. A. O’Malley, and S. A. Berceli. Flow reversal promotes intimal thickening in vein grafts. J. Vasc. Surg. 60:471–478, 2014.

    Article  CAS  Google Scholar 

  13. He, Y., H. Northrup, H. Le, A. K. Cheung, S. A. Berceli, and Y. T. Shiu. Medical image-based computational fluid dynamics and fluid-structure interaction analysis in vascular diseases. Front. Bioeng. Biotechnol.10:855791, 2022.

    Article  Google Scholar 

  14. He, Y., C. M. Terry, C. Nguyen, S. A. Berceli, Y. T. Shiu, and A. K. Cheung. Serial analysis of lumen geometry and hemodynamics in human arteriovenous fistula for hemodialysis using magnetic resonance imaging and computational fluid dynamics. J. Biomech. 46:165–169, 2013.

    Article  Google Scholar 

  15. Jackson, M., N. B. Wood, S. Zhao, A. Augst, J. H. Wolfe, W. M. W. Gedroyc, A. D. Hughes, S. A. M. Thom, and X. Y. Xu. Low wall shear stress predicts subsequent development of wall hypertrophy in lower limb bypass grafts. Artery. Res. 3:32–38, 2009.

    Article  Google Scholar 

  16. Jacot, J. G., I. Abdullah, M. Belkin, M. Gerhard-Herman, P. Gaccione, J. F. Polak, M. C. Donaldson, A. D. Whittemore, and M. S. Conte. Early adaptation of human lower extremity vein grafts: wall stiffness changes accompany geometric remodeling. J. Vasc. Surg. 39:547–555, 2004.

    Article  Google Scholar 

  17. Jiang, Z., L. Wu, B. L. Miller, D. R. Goldman, C. M. Fernandez, Z. S. Abouhamze, C. K. Ozaki, and S. A. Berceli. A novel vein graft model: adaptation to differential flow environments. Am. J. Physiol. Heart Circ. Physiol. 286:H240–H245, 2004.

    Article  CAS  Google Scholar 

  18. Klein, B., A. Destephens, L. Dumeny, Q. Hu, Y. He, K. O’Malley, Z. Jiang, R. Tran-Son-Tay, and S. Berceli. Hemodynamic influence on smooth muscle cell kinetics and phenotype during early vein graft adaptation. Ann. Biomed. Eng. 45:644–655, 2017.

    Article  Google Scholar 

  19. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 5:293–302, 1985.

    Article  CAS  Google Scholar 

  20. Longchamp, A., F. Alonso, C. Dubuis, F. Allagnat, X. Berard, P. Meda, F. Saucy, J.-M. Corpataux, D. Sébastien, and J.-A. Haefliger. The use of external mesh reinforcement to reduce intimal hyperplasia and preserve the structure of human saphenous veins. Biomaterials. 35:2588–2599, 2014.

    Article  CAS  Google Scholar 

  21. Meyerson, S. L., C. L. Skelly, M. A. Curi, U. M. Shakur, J. E. Vosicky, S. Glagov, L. B. Schwartz, T. Christen, and G. Gabbiani. The effects of extremely low shear stress on cellular proliferation and neointimal thickening in the failing bypass graft. J. Vasc. Surg. 34:90–97, 2001.

    Article  CAS  Google Scholar 

  22. Morinaga, K., H. Eguchi, T. Miyazaki, K. Okadome, and K. Sugimachi. Development and regression of intimal thickening of arterially transplanted autologous vein grafts in dogs. J. Vasc. Surg. 5:719–730, 1987.

    Article  CAS  Google Scholar 

  23. Osterberg, K., and E. Mattsson. Intimal hyperplasia in mouse vein grafts is regulated by flow. J. Vasc. Res. 42:13–20, 2005.

    Article  Google Scholar 

  24. Owens, C. D., W. J. Gasper, A. S. Rahman, and M. S. Conte. Vein graft failure. J. Vasc. Surg. 61:203–216, 2015.

    Article  Google Scholar 

  25. Owens, C. D., F. J. Rybicki, N. Wake, A. Schanzer, D. Mitsouras, M. D. Gerhard-Herman, and M. S. Conte. Early remodeling of lower extremity vein grafts: inflammation influences biomechanical adaptation. J. Vasc. Surg. 47:1235–1242, 2008.

    Article  Google Scholar 

  26. Owens, C. D., N. Wake, M. S. Conte, M. Gerhard-Herman, and J. A. Beckman. In vivo human lower extremity saphenous vein bypass grafts manifest flow mediated vasodilation. J. Vasc. Surg. 50:1063–1070, 2009.

    Article  Google Scholar 

  27. Owens, C. D., N. Wake, J. G. Jacot, M. Gerhard-Herman, P. Gaccione, M. Belkin, M. A. Creager, and M. S. Conte. Early biomechanical changes in lower extremity vein grafts–distinct temporal phases of remodeling and wall stiffness. J. Vasc. Surg. 44:740–746, 2006.

    Article  Google Scholar 

  28. Papaharilaou, Y., D. J. Doorly, and S. J. Sherwin. The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis. J. Biomech. 35:1225–1239, 2002.

    Article  CAS  Google Scholar 

  29. Peiffer, V., A. A. Bharath, S. J. Sherwin, and P. D. Weinberg. A novel method for quantifying spatial correlations between patterns of atherosclerosis and hemodynamic factors. J. Biomech. Eng.135:021023, 2013.

    Article  Google Scholar 

  30. Peiffer, V., S. J. Sherwin, and P. D. Weinberg. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc. Res. 99:242–250, 2013.

    Article  CAS  Google Scholar 

  31. Ponzini, R., C. Vergara, A. Redaelli, and A. Veneziani. Reliable CFD-based estimation of flow rate in haemodynamics measures. Ultrasound. Med. Biol. 32:1545–1555, 2006.

    Article  Google Scholar 

  32. Rehfuss, J., S. Scali, Y. He, B. Schmit, K. Desart, P. Nelson, and S. Berceli. The correlation between computed tomography and duplex evaluation of autogenous vein bypass grafts and their relationship to failure. J. Vasc. Surg. 62:1546–1554, 2015.

    Article  Google Scholar 

  33. Rowland, E. M., Y. Mohamied, K. Yean Chooi, E. L. Bailey, and P. D. Weinberg. Comparison of statistical methods for assessing spatial correlations between maps of different arterial properties. J. Biomech. Eng. 137:101003, 2015.

    Article  Google Scholar 

  34. Schwartz, L. B., M. K. O’Donohoe, C. M. Purut, E. M. Mikat, P. O. Hagen, and R. L. McCann. Myointimal thickening in experimental vein grafts is dependent on wall tension. J. Vasc. Surg. 15:176–186, 1992.

    Article  CAS  Google Scholar 

  35. Sobel, M., M. Yagi, K. Moreno, T. R. Kohler, G. L. Tang, E. S. Wijelath, J. Marshall, and R. D. Kenagy. Anti-phosphorylcholine IgM, an Anti-inflammatory mediator, predicts peripheral vein graft failure: a prospective observational study. Eur. J Vasc. Endovasc. Surg. 57:259–266, 2019.

    Article  Google Scholar 

  36. Stooker, W., M. Gök, P. Sipkema, H. W. M. Niessen, A. Baidoshvili, N. Westerhof, E. K. Jansen, C. R. H. Wildevuur, and L. Eijsman. Pressure-diameter relationship in the human greater saphenous vein. Ann. Thorac. Surg. 76:1533–1538, 2003.

    Article  Google Scholar 

  37. Tran-Son-Tay, R., M. Hwang, M. Garbey, Z. Jiang, C. K. Ozaki, and S. A. Berceli. An experiment-based model of vein graft remodeling induced by shear stress. Ann. Biomed. Eng. 36:1083–1091, 2008.

    Article  Google Scholar 

  38. Tricarico, R., Y. He, L. Laquian, S. T. Scali, R. Tran-Son-Tay, A. W. Beck, and S. A. Berceli. Hemodynamic and anatomic predictors of renovisceral stent-graft occlusion following chimney endovascular repair of juxtarenal aortic aneurysms. J. Endovasc. Ther. 24:880–888, 2017.

    Article  Google Scholar 

  39. Ward, A. O., G. D. Angelini, M. Caputo, P. C. Evans, J. L. Johnson, M. S. Suleiman, R. M. Tulloh, S. J. George, and M. Zakkar. NF-kappaB inhibition prevents acute shear stress-induced inflammation in the saphenous vein graft endothelium. Sci. Rep. 10:15133, 2020.

    Article  CAS  Google Scholar 

  40. Zwolak, R. M., M. C. Adams, and A. W. Clowes. Kinetics of vein graft hyperplasia: association with tangential stress. J. Vasc. Surg. 5:126–136, 1987.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the U.S. Veterans Affairs Clinical Science Research and Development Merit Review Grant (S.A.B.) and the National Institutes of Health Grant 1K23HL084090 (Peter R Nelson).

Conflict of interest

The authors have no professional or financial conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong He.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Tran-Son-Tay, R. & Berceli, S.A. Distinct Temporal Pattern of the Prediction of Lumen Remodeling of Lower Extremity Vein Bypass Grafts by Initial Local Hemodynamics. Ann Biomed Eng 51, 296–307 (2023). https://doi.org/10.1007/s10439-022-03019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03019-7

Keywords

Navigation