Skip to main content

Advertisement

Log in

The Influence of Static Load and Sideways Impact Fall on Extramedullary Bone Plates Used to Treat Intertrochanteric Femoral Fracture: A Preclinical Strength Assessment

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Hip fracture accounts for a large number of hospitalizations, thereby causing substantial economic burden. Majority (> 90%) of all hip fractures are associated to sideways fall. Studies on sideways fall usually involve loading at quasi-static or at constant displacement rate, which neglects the physics of actual fall. Understanding femur resonance frequency and associated mode shapes excited by dynamic loads is also critical. Two commercial extramedullary implants, proximal femoral locking plate (PFLP) and variable angle dynamic hip screw (VA-DHS), were chosen to carry out the preclinical assessments on a simulated Evans-I type intertrochanteric fracture. In this study, we hypothesized that the behavior of the implant depends on the loading types—axial static and transverse impact—and a rigid implanted construct will absorb less impact energy for sideways fall. The in silico models were validated using experimental measurements of full-field strain data obtained from a 2D digital image correlation (DIC) study. Under peak axial load of 3 kN, PFLP construct predicted greater axial stiffness (1.07 kN/mm) as opposed to VA-DHS (0.85 kN/mm), although the former predicted slightly higher proximal stress shielding. Further, with greater mode 2 frequency, PFLP predicted improved performance in resisting bending due to sideways fall as compared to the other implant. Overall, the PFLP implanted femur predicted the least propensity to adverse stress intensities, suggesting better structural rigidity and higher capacity in protecting the fractured femur against fall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Abe, S., N. Narra, R. Nikander, J. Hyttinen, R. Kouhia, and H. Sievänen. Impact loading history modulates hip fracture load and location: a finite element simulation study of the proximal femur in female athletes. J. Biomech. 76:136–143, 2018.

    Article  Google Scholar 

  2. Ahn, J., and J. Bernstein. Fractures in brief: intertrochanteric hip fractures. Clin. Orthop. Relat. Res. 468(5):1450–1452, 2010.

    Article  Google Scholar 

  3. Aldieri, A., M. Terzini, G. Osella, A. M. Priola, A. Angeli, A. Veltri, A. Audenino, and C. Bignardi. Osteoporotic hip fracture prediction: is T-score based criterion enough? A Hip Structural Analysis based model. J. Biomech. Eng. 2018. https://doi.org/10.1115/14040586.

    Article  Google Scholar 

  4. Aminian, A., F. Gao, W. W. Fedoriw, L. Q. Zhang, D. M. Kalainov, and B. R. Merk. Vertically oriented femoral neck fractures: mechanical analysis of four fixation techniques. J. Orthop. Trauma. 21(8):544–548, 2007.

    Article  Google Scholar 

  5. Bel, J. C. Pitfalls and limits of locking plates. Orthop. Traumatol. Surg. Res. 105(1S):S103–S109, 2019.

    Article  Google Scholar 

  6. Biomechanical products catalog Sawbones: Test materials and composite bones. https://www.sawbones.com/media/assets/product/documents/biomechanical_catalog2020.pdf. Accessed 7 Dec 2020.

  7. Braithwaite, R. S., N. F. Col, and J. B. Wong. Estimating hip fracture morbidity, mortality and costs. J. Am. Geriatrics Soc. 51:364–370, 2003.

    Article  Google Scholar 

  8. Burstein, A. H., and V. H. Frankel. A standard test for laboratory animal bone. J Biomech. 4:155–158, 1971.

    Article  CAS  Google Scholar 

  9. Butler, M., M. Forte, R. L. Kane, S. Joglekar, S. J. Duval, M. Swiontkowski, and T. Wilt. Treatment of common hip fractures. Evid. Rep. Technol. Assess. 184:1–85, 2009.

    Google Scholar 

  10. Chaim, S. H., D. P. Mukherjee, A. L. Ogden, R. H. Mayeux, K. K. Sadasivan, and J. A. Albright. A biomechanical study of femoral neck fracture fixation with the VHS Vari-Angle Hip Fixation System. Am. J. Orthop. 31(1 Suppl):22–24, 2002.

    Google Scholar 

  11. Chalise, P. K., A. K. Mishra, S. B. Shah, V. Adhikari, and R. P. Singh. Outcome of pertrochantric fracture of the femur treated with proximal femoral locking compression plate. Nepal Med. Coll. J. 14(4):324–327, 2012.

    CAS  Google Scholar 

  12. Chanda, S., A. Dickinson, S. Gupta, and M. Browne. Full-field in vitro measurements and in silico predictions of strain shielding in the implanted femur after total hip arthroplasty. Proc. Inst. Mech. Eng. Part H. 229(8):549–559, 2015.

    Article  Google Scholar 

  13. Courtney, A. C., E. F. Wachtel, E. R. Myers, and W. C. Hayes. Effects of loading rate on strength of the proximal femur. Calcif. Tissue Int. 55(1):53–58, 1994.

    Article  CAS  Google Scholar 

  14. Crist, B. D., A. Khalafi, S. J. Hazelwood, and M. A. Lee. A biomechanical comparison of locked plate fixation with percutaneous insertion capability versus the angled blade plate in a subtrochanteric fracture gap model. J. Orthop. Trauma. 23(9):622–627, 2009.

    Article  Google Scholar 

  15. Dickinson, A. S., A. C. Taylor, H. Ozturk, and M. Browne. Experimental validation of a finite element model of the proximal femur using digital image correlation and a composite bone model. J. Biomech. Eng. 133(1):014504, 2011.

    Article  CAS  Google Scholar 

  16. Ferguson, S. J., U. P. Wyss, and D. R. Pichora. Finite element stress analysis of a hybrid fracture fixation plate. Med. Eng. Phys. 18:241–250, 1996.

    Article  CAS  Google Scholar 

  17. Floyd, J. C., R. V. O’Toole, A. Stall, D. P. Forward, M. Nabili, D. Shillingburg, A. Hsieh, and J. W. Nascone. Biomechanical comparison of proximal locking plates and blade plates for the treatment of comminuted subtrochanteric femoral fractures. J. Orthop. Trauma. 23(9):628–633, 2009.

    Article  Google Scholar 

  18. Floyd, M. W., J. C. France, and D. F. Hubbard. Early experience with the proximal femoral locking plate. Orthopedics. 36(12):1488–1494, 2013.

    Article  Google Scholar 

  19. Forward, D. P., C. J. Doro, R. V. O’Toole, H. Kim, J. C. Floyd, M. F. C. H. SciadiniTuren, A. H. Hsieh, and J. W. Nascone. A biomechanical comparison of a locking plate, a nail, and a 95° angled blade plate for fixation of subtrochanteric femoral fractures. J. Orthop. Trauma. 26(6):334–40, 2012.

    Article  Google Scholar 

  20. Gilchrist, S., K. K. Nishiyama, P. de Bakker, P. Guy, S. K. Boyd, T. Oxland, and P. A. Cripton. Proximal femur elastic behaviour is the same in impact and constant displacement rate fall simulation. J. Biomech. 47(15):3744–3749, 2014.

    Article  CAS  Google Scholar 

  21. Gokhale, N. S., S. S. Deshpande, S. V. Bedekar, and A. N. Thite, Practical finite element analysis, , 2008.

  22. GOM Correlate. GOM—Precise Industrial 3D Metrology. Braunschweig, Germany. https://www.gom.com. accessed on 7 September 2019.

  23. Grassi, L., S. P. Väänänen, M. Ristinmaa, J. S. Jurvelin, and H. Isaksson. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements. J. Biomech. 49(5):802–806, 2016.

    Article  Google Scholar 

  24. Grisso, J. A., J. L. Kelsey, B. L. Strom, G. Y. Chiu, G. Maislin, L. A. O’Brien, S. Hoffman, and F. Kaplan. Risk factors for falls as a cause of hip fracture in women. The Northeast Hip Fracture Study Group. N. Engl. J. Med. 324(19):1326–31, 1991.

    Article  CAS  Google Scholar 

  25. Haentjens, P., P. Autier, M. Barette, K. Venken, D. Vanderschueren, and S. Boonen. Hip fracture study group. Survival and functional outcome according to hip fracture type: a one-year prospective cohort study in elderly women with an intertrochanteric or femoral neck fracture. Bone. 41(6):958–64, 2007.

    Article  CAS  Google Scholar 

  26. Hasenboehler, E. A., J. F. Agudelo, S. J. Morgan, W. R. Smith, D. J. Hak, and P. F. Stahel. Treatment of complex proximal femoral fractures with the proximal femur locking compression plate. Orthopedics. 30(8):618–623, 2007.

    Article  Google Scholar 

  27. Hensley, S., M. Christensen, S. Small, D. Archer, E. Lakes, and R. Rogge. Digital image correlation techniques for strain measurement in a variety of biomechanical test models. Acta Bioeng. Biomech. 19(3):187–195, 2017.

    Google Scholar 

  28. Huang, H. M., L. C. Pan, S. Y. Lee, C. L. Chiu, K. H. Fan, and K. N. Ho. Assessing the implant/bone interface by using natural frequency analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 90(3):285–291, 2000.

    Article  CAS  Google Scholar 

  29. Islam, A. B. M. S., M. Jameel, and M. Z. Jumaat. Seismic isolation in buildings to be a practical reality: behavior of structure and installation technique. J. Eng. Technol. Res. 3(4):99–117, 2011.

    Google Scholar 

  30. Jazinizadeh, F., H. Mohammadi, and C. E. Quenneville. Comparing the fracture limits of the proximal femur under impact and quasi-static conditions in simulation of a sideways fall. J. Mech. Behav. Biomed. Mater. 103:103593, 2020.

    Article  Google Scholar 

  31. Jensen, J. S. Classification of trochanteric fractures. Acta Orthop. Scand. 51(5):803–810, 1980.

    Article  CAS  Google Scholar 

  32. Jetté, B., V. Brailovski, C. Simoneau, M. Dumas, and P. Terriault. Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem. J. Mech. Behav. Biomed. Mater. 77:539–550, 2018.

    Article  Google Scholar 

  33. Johnson, B., J. Stevenson, R. Chamma, A. Patel, S.-J. Rhee, C. Lever, I. Starks, and P. J. Roberts. Short-term follow-up of pertrochanteric fractures treated using the proximal femoral locking plate. J. Orthop. Trauma. 28(5):283–287, 2014.

    Article  Google Scholar 

  34. Katz, Y., and Z. Yosibash. New insights on the proximal femur biomechanics using Digital Image Correlation. J. Biomech. 101:109599, 2020.

    Article  Google Scholar 

  35. Keyak, J. H. Relationships between femoral fracture loads for two load configurations. J. Biomech. 33(4):499–502, 2000.

    Article  CAS  Google Scholar 

  36. Keyak, J. H., S. A. Rossi, K. A. Jones, C. M. Les, and H. B. Skinner. Prediction of fracture location in the proximal femur using finite element models. Med. Eng. Phys. 23(9):657–664, 2001.

    Article  CAS  Google Scholar 

  37. Khalil, T. B., D. C. Viano, and L. A. Taber. Vibrational characteristics of the embalmed human femur. J. Sound Vib. 75(3):417–436, 1981.

    Article  Google Scholar 

  38. Latifi, M. H., K. Ganthel, S. Rukmanikanthan, A. Mansor, T. Kamarul, and M. Bilgen. Prospects of implant with locking plate in fixation of subtrochanteric fracture: experimental demonstration of its potential benefits on synthetic femur model with supportive hierarchical nonlinear hyperelastic finite element analysis. Biomed. Eng. 11(23):1–18, 2012.

    Google Scholar 

  39. Lewis, G. Properties of acrylic bone cement: state of the art review. J. Biomed. Mater. Res. 38(2):155–182, 1997.

    Article  CAS  Google Scholar 

  40. Link, T. M., V. Vieth, R. Langenberg, N. Meier, A. Lotter, D. Newitt, and S. Majumdar. Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif. Tissue Int. 72:156–165, 2003.

    Article  CAS  Google Scholar 

  41. Lotz, J. C., E. J. Cheal, and W. C. Hayes. Fracture prediction for the proximal femur using finite element models: Part II—Nonlinear analysis. J. Biomech. Eng. 113(4):361–365, 1991.

    Article  CAS  Google Scholar 

  42. Lotz, J. C., E. J. Cheal, and W. C. Hayes. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos. Int. 5(4):252–261, 1995.

    Article  CAS  Google Scholar 

  43. Lunsjö, K., L. Ceder, J. Tidermark, P. Hamberg, B. E. Larsson, B. Ragnarsson, R. W. Knebel, I. Allvin, K. Hjalmars, S. Norberg, P. Fornander, A. Hauggaard, and L. Stigsson. Extramedullary fixation of 107 subtrochanteric fractures: a randomized multicenter trial of the Medoff sliding plate versus 3 other screw-plate systems. Acta Orthop. Scand. 70(5):459–466, 1999.

    Article  Google Scholar 

  44. Mardani-Kivi, M., A. Mirbolook, S. Khajeh Jahromi, and M. Rouhi Rad. Fixation of intertrochanteric fractures: dynamic hip screw versus locking compression plate. Trauma Mon. 18(2):67–70, 2013.

    Article  Google Scholar 

  45. Mayhew, P. M., C. D. Thomas, J. G. Clement, N. Loveridge, T. J. Beck, W. Bonfield, C. J. Burgoyne, and J. Reeve. Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet. 366(9480):129–135, 2005.

    Article  Google Scholar 

  46. Nag, P., and S. Chanda. Biomechanical design prognosis of two extramedullary fixation devices for subtrochanteric femur fracture: a finite element study. Med. Biol. Eng. Comput. 59(2):271–285, 2021.

    Article  Google Scholar 

  47. Nevitt, M. C., S. R. Cummings, S. Kidd, and D. Black. Risk factors for recurrent nonsyncopal falls. A prospective study. JAMA. 261(18):2663–2668, 1989.

    Article  CAS  Google Scholar 

  48. Nieves, J. W., J. P. Bilezikian, J. M. Lane, T. A. Einhorn, Y. Wang, M. Steinbuch, and F. Cosman. Fragility fractures of the hip and femur: incidence and patient characteristics. Osteoporos. Int. 21(3):399–408, 2010.

    Article  CAS  Google Scholar 

  49. Nishiyama, K. K., S. Gilchrist, P. Guy, P. Cripton, and S. K. Boyd. Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration. J. Biomech. 46(7):1231–1236, 2013.

    Article  Google Scholar 

  50. Nowotarski, P. J., B. Ervin, B. Weatherby, J. Pettit, R. Goulet, and B. Norris. Biomechanical analysis of a novel femoral neck locking plate for treatment of vertical shear Pauwel’s type C femoral neck fractures. Injury. 43(6):802–806, 2012.

    Article  Google Scholar 

  51. Oger, P., V. Katz, N. Lecorre, and P. Beaufils. Fracture of the great trochanter treated by dynamic hip screw plate: measure of impaction according to fracture type. Rev. Chir. Orthop. 84:539–545, 1998.

    CAS  Google Scholar 

  52. Oh, C.-W., J.-J. Kim, Y.-S. Byun, J.-K. Oh, J.-W. Kim, S.-Y. Kim, B.-C. Park, and H.-J. Lee. Minimally invasive plate osteosynthesis of subtrochanteric femur fractures with a locking plate: a prospective series of 20 fractures. Arch. Orthop. Trauma Surg. 129(12):1659–65, 2009.

    Article  Google Scholar 

  53. Pérez, M. A., and B. Seral-García. A finite element analysis of the vibration behaviour of a cementless hip system. Comput. Methods Biomech. Biomed. Eng. 16(9):1022–1031, 2013.

    Article  Google Scholar 

  54. Ravi, G. O., and S. Saheb. Study of proximal femoral locking compression plate in extra capsular fracture neck of femur. Int. J. Res. Med. Sci. 3(12):3726–3733, 2017.

    Google Scholar 

  55. Reina-Romo, E., J. Rodríguez-Vallés, and J. A. Sanz-Herrera. In silico dynamic characterization of the femur: physiological versus mechanical boundary conditions. Med. Eng. Phys. S1350–4533(18):30090, 2018.

    Google Scholar 

  56. Robinovitch, S. N., W. C. Hayes, and T. A. McMahon. Prediction of femoral impact forces in falls on the hip. J. Biomech. Eng. 113(4):366–374, 1991.

    Article  CAS  Google Scholar 

  57. Rossman, T., S. Uthamaraj, A. Rezaei, S. McEligot, H. Giambini, I. Jasiuk, M. J. Yaszemski, L. Lu, and D. Dragomir-Daescu. A method to estimate cadaveric femur cortical strains during fracture testing using digital image correlation. J. Vis. Exp. 127:54942, 2017.

    Google Scholar 

  58. Saini, P., R. Kumar, V. Shekhawat, N. Joshi, M. Bansal, and S. Kumar. Biological fixation of comminuted subtrochanteric fractures with proximal femur locking compression plate. Injury. 44(2):226–231, 2013.

    Article  Google Scholar 

  59. Saudan, M., A. Lübbeke, C. Sadowski, N. Riand, R. Stern, and P. Hoffmeyer. Pertrochanteric fractures: is there an advantage to an intramedullary nail? A randomized, prospective study of 206 patients comparing the dynamic hip screw and proximal femoral nail. J. Orthop. Trauma. 16(6):86–93, 2002.

    Article  Google Scholar 

  60. Schileo, E., L. Balistreri, L. Grassi, L. Cristofolini, and F. Taddei. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations? J. Biomech. 47(14):3531–3538, 2014.

    Article  Google Scholar 

  61. Schileo, E., F. Taddei, L. Cristofolini, and M. Viceconti. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J. Biomech. 41(2):356–367, 2008.

    Article  Google Scholar 

  62. Seinsheimer, F. Subtrochanteric fractures of the femur. J. Bone Joint Surg. Am. 60(3):300–306, 1978.

    Article  CAS  Google Scholar 

  63. Setiobudi, T., Y. H. Ng, C. T. Lim, S. Liang, K. Lee, and S. D. De. Clinical outcome following treatment of stable and unstable intertrochanteric fractures with dynamic hip screw. Ann. Acad. Med. 40(11):482–487, 2011.

    Google Scholar 

  64. Sommer, C., E. Gautier, M. Müller, D. L. Helfet, and M. Wagner. First clinical results of the Locking Compression Plate (LCP). Injury. 34(2):B43–B54, 2003.

    Article  Google Scholar 

  65. Subash, Y., S. Vishnu, and Damodharan,. Management of unstable intertrochanteric fractures with proximal femoral locking plate—a prospective study of 30 patients. Int. J. Res. Pharm. Sci. 12(1):274–279, 2021.

    Article  Google Scholar 

  66. Sutton, M. A., J. H. Yan, V. Tiwari, H. W. Schreier, and J. J. Orteu. The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt. Lasers Eng. 46(10):746–757, 2008.

    Article  Google Scholar 

  67. Synthes© Incorporation or its affiliates 4.5 mm LCP Proximal Femur Plates. Part of the synthes periarticular LCP plating system. Technique Guide, 2010.

  68. Thrun, M., C. Finfrock, A. Clarke, and K. Clarke. Effects of unloading on subsequent yielding behavior in 304 stainless steel. Front. Mater. 7:615361, 2021. https://doi.org/10.3389/fmats.2020.615361.

    Article  Google Scholar 

  69. Tomaszewski, P. K., N. Verdonschot, S. K. Bulstra, and G. J. Verkerke. A comparative finite-element analysis of bone failure and load transfer of osseointegrated prostheses fixations. Ann. Biomed. Eng. 38(7):2418–2427, 2010.

    Article  CAS  Google Scholar 

  70. Tonino, A. J., C. L. Davidson, P. J. Klopper, and L. A. Linclau. Protection from stress in bone and its effects. Experiments with stainless steel and plastic plates in dogs. J. Bone Joint Surg. 58(1):107–113, 1976.

    Article  CAS  Google Scholar 

  71. Villette, C. C., and A. T. M. Phillips. Rate and age-dependent damage elasticity formulation for efficient hip fracture simulations. Med. Eng. Phys. 61:1–12, 2018.

    Article  CAS  Google Scholar 

  72. Wang, J., X.-L. Ma, J.-X. Ma, D. Xing, Y. Yang, S.-W. Zhu, B.-Y. Ma, Y. Chen, R. Feng, H.-B. Jia, and J.-T. Yu. Biomechanical analysis of four types of internal fixation in subtrochanteric fracture models. Orthop. Surg. 6(2):128–136, 2014.

    Article  Google Scholar 

  73. Wieser, K., and R. Babst. Fixation failure of the LCP proximal femoral plate 45./5.0 in patients with missing posteromedial support in unstable per-, inter-, and subtrochanteric fractures of the proximal femur. Arch. Orthop. Trauma Surg. 130(10):1281–1287, 2010.

    Article  Google Scholar 

  74. Wirtz, C., F. Abbasi, D. S. Evangelopoulos, S. Kohl, K. A. Siebenrock, and A. Krüger. High failure rate of trochanteric fracture osteosynthesis with proximal femoral locking compression plate. Injury. 44(6):751–756, 2013.

    Article  CAS  Google Scholar 

  75. Zanetti, E. M., and A. L. Audenino. Thermoelastic stress analysis by means of a standard thermocamera. Exp. Tech. 31(2):42–50, 2007.

    Article  Google Scholar 

  76. Zanetti, E. M., and A. L. Audenino. Differential thermography for experimental, full-field stress analysis of hip arthroplasty. J. Mech. Med. Biol. 10(3):515–529, 2010. https://doi.org/10.1142/S0219519410003496.

    Article  Google Scholar 

  77. Zha, G. C., Z.-L. Chen, X.-B. Qi, and J.-Y. Sun. Treatment of pertrochanteric fractures with a proximal femur locking compression plate. Injury. 42(11):1294–1299, 2011.

    Article  Google Scholar 

  78. Zhang, Z., X. Zhang, W. Chen, et al. A high-efficient energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle. Appl. Energy. 178:177–188, 2016.

    Article  Google Scholar 

  79. Zhong, B., Y. Zhang, C. Zhang, and C.-F. Luo. A comparison of proximal femoral locking compression plates with dynamic hip screws in extracapsular femoral fractures. Orthop. Traumatol. Surg. Res. 100(6):663–668, 2014.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the computational facilities available at the Biomechanics Laboratory, Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India, which has helped carry out this study. The authors would also like to acknowledge Dr. Sourabh Boruah, Harris Orthopaedics Laboratory, Harvard Medical School, Boston, USA for pertinent inputs for the experimental work. The study has been partially supported by SERB, India (Grant no. SRG/2019/000235). The travel related to the study was partially supported by Fulbright Trust, USA.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souptick Chanda.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, P., Borgohain, B., Ahmed, K.A. et al. The Influence of Static Load and Sideways Impact Fall on Extramedullary Bone Plates Used to Treat Intertrochanteric Femoral Fracture: A Preclinical Strength Assessment. Ann Biomed Eng 50, 1923–1940 (2022). https://doi.org/10.1007/s10439-022-03013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03013-z

Keywords

Navigation