Skip to main content
Log in

Defining Experimental Variability in Actuator-Driven Closed Head Impact in Rats

  • S.I. : 50Th Anniversary Reviews
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is a world-wide health challenge that lacks tools for diagnosis and treatment. There is a need for translational preclinical models to effectively design clinical tools, however, the diversity of models is a barrier to reproducible studies. Actuator-driven closed head impact (AD-CHI) models have translational advantages in replicating the pathophysiological and behavioral outcomes resulting from impact TBI. The main advantages of AD-CHI protocols include versatility of impact parameters such as impact angle, velocity, depth, and dwell time with the ability to interchange tip types, leading to consistent outcomes without the need for craniectomy. Sources of experimental variability within AD-CHI rat models are identified within this review with the aim of supporting further characterization to improve translational value. Primary areas of variability may be attributed to lack of standardization of head stabilization methods, reporting of tip properties, and performance of acute neurological assessments. AD-CHI models were also found to be more prevalently used among pediatric and repeated TBI paradigms. As this model continues to grow in use, establishing the relationships between impact parameters and associated injury outcomes will reduce experimental variability between research groups and encourage meaningful discussions as the community moves towards common data elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

A:

Length of apnea test

ACHI:

Awake closed head injury

AD-CHI:

Actuator-driven closed head impact

AP:

Anterior–posterior

BBB:

Blood–brain-barrier

BM:

Barnes maze test

BW:

Beam walk test

CCI:

Controlled cortical impact

CDEs:

Common data elements

EPM:

Elevated plus maze test

F:

Female

FST:

Forced swim test

LA:

Locomotor activity test

LDB:

Light–dark box test

LE:

Long Evans rats

M:

Male

MPS:

Maximum principal strain

ML:

Medial–lateral

MWM:

Morris water maze

NLR:

Novel location recognition

NOR:

Novel object recognition

OFT:

Open field test

P:

Pain Reflex test

P#:

Post-natal day #

RR:

Loss of righting reflex test

SD:

Sprague Dawley rats

SD-T:

Transgenic Sprague Dawley rats

SPT:

Sucrose preference test

TBI:

Traumatic brain injury

VF:

Von Frey test

References

  1. Bayly, P. V., K. T. Dikranian, E. E. Black, C. Young, Y.-Q. Qin, J. Labruyere, and J. W. Olney. Spatiotemporal evolution of apoptotic neurodegeneration following traumatic injury to the developing rat brain. Brain Res. 1107:70–81, 2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brody, D. L., C. Mac Donald, C. C. Kessens, C. Yuede, M. Parsadanian, M. Spinner, E. Kim, K. E. Schwetye, D. M. Holtzman, and P. V. Bayly. Electromagnetic controlled cortical impact device for precise, graded experimental traumatic brain injury. J. Neurotrauma. 24:657–673, 2007

    Article  PubMed  Google Scholar 

  3. Cernak, I., R. Vink, D. N. Zapple, M. I. Cruz, F. Ahmed, T. Chang, S. T. Fricke, and A. I. Faden. The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol. Dis. 17:29–43, 2004

    Article  CAS  PubMed  Google Scholar 

  4. Chiu, L. S., R. S. Anderton, J. L. Cross, V. W. Clark, N. W. Knuckey, and B. P. Meloni. Poly-arginine peptide r18d reduces neuroinflammation and functional deficits following traumatic brain injury in the long-evans rat. Int. J. Pept. Res. Ther. 25:1563–1572, 2019

    Article  CAS  Google Scholar 

  5. Christie, B. R., J. Trivino-Paredes, C. Pinar, K. J. Neale, A. Meconi, H. Reid, and C. P. Hutton. A rapid neurological assessment protocol for repeated mild traumatic brain injury in awake rats. Curr. Protoc. Neurosci. 89:e80, 2019

    Article  PubMed  Google Scholar 

  6. Currier Thomas, T., C. E. Bromberg, and G. Krishna. Female sex in experimental traumatic brain injury research: forging a path forward. Neural. Regen. Res. 17:550–552, 2022

    Article  PubMed  Google Scholar 

  7. Dickerson, M. R., Z. S. Bailey, S. F. Murphy, M. J. Urban, and P. J. VandeVord. Glial activation in the thalamus contributes to vestibulomotor deficits following blast-induced neurotrauma. Front. Neurol. 2020. https://doi.org/10.3389/fneur.2020.00618

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dickerson, M. R., S. F. Murphy, M. J. Urban, Z. White, and P. J. VandeVord. Chronic anxiety- and depression-like behaviors are associated with glial-driven pathology following repeated blast induced neurotrauma. Front. Behav. Neurosci. 2021. https://doi.org/10.3389/fnbeh.2021.787475

    Article  PubMed  PubMed Central  Google Scholar 

  9. DiLeonardi, A. M., J. W. Huh, and R. Raghupathi. Impaired axonal transport and neurofilament compaction occur in separate populations of injured axons following diffuse brain injury in the immature rat. Brain Res. 1263:174–182, 2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dixon, E. C., G. L. Clifton, J. W. Lighthall, A. A. Yaghmai, and R. L. Hayes. A controlled cortical impact model of traumatic brain injury in the rat. J. Neurosci. Methods. 39:253–262, 1991

    Article  CAS  PubMed  Google Scholar 

  11. Dyck, A. C. F., and T. L. Ivanco. Bdnf expression increases without changes in play behavior following concussion in juvenile rats (Rattus norvegicus). Dev. Neurorehabil. 21:475–479, 2018

    Article  PubMed  Google Scholar 

  12. Ellenbroek, B., and J. Youn. Rodent models in neuroscience research: is it a rat race? Dis. Model Mech. 9:1079–1087, 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferguson, L., C. C. Giza, R. O. Serpa, T. Greco, M. Folkerts, and M. L. Prins. Recovery from repeat mild traumatic brain injury in adolescent rats is dependent on pre-injury activity state. Front. Neurol. 2021. https://doi.org/10.3389/fneur.2020.616661

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fuochi, S., M. E. Galasso, R. Colombo, D. Giaquinto, P. De Girolamo, and L. D’Angelo. Puberty onset curve in cd (Sprague Dawley) and long Evans outbred male rats. Lab. Anim. 2022. https://doi.org/10.1177/00236772221078725

    Article  PubMed  Google Scholar 

  15. Gefen, A., N. Gefen, Q. Zhu, R. Raghupathi, and S. S. Margulies. Age-dependent changes in material properties of the brain and braincase of the rat. J. Neurotrauma. 20:1163–1177, 2003

    Article  PubMed  Google Scholar 

  16. Giacometti, L. L., J. W. Huh, and R. Raghupathi. Sex and estrous-phase dependent alterations in depression-like behavior following mild traumatic brain injury in adolescent rats. J. Neurosci. Res. 100:490–505, 2022

    Article  CAS  PubMed  Google Scholar 

  17. Grant, D. A., R. Serpa, C. R. Moattari, A. Brown, T. Greco, M. L. Prins, and E. Teng. Repeat mild traumatic brain injury in adolescent rats increases subsequent β-amyloid pathogenesis. J. Neurotrauma. 35:94–104, 2017

    Article  PubMed  Google Scholar 

  18. Greco, T., D. Hovda, and M. Prins. The effects of repeat traumatic brain injury on the pituitary in adolescent rats. J. Neurotrauma. 30:1983–1990, 2013

    Article  PubMed  PubMed Central  Google Scholar 

  19. Greco, T., D. A. Hovda, and M. L. Prins. Adolescent tbi-induced hypopituitarism causes sexual dysfunction in adult male rats. Dev. Neurobiol. 75:193–202, 2015

    Article  PubMed  Google Scholar 

  20. Hanlon, L. A., J. W. Huh, and R. Raghupathi. Minocycline transiently reduces microglia/macrophage activation but exacerbates cognitive deficits following repetitive traumatic brain injury in the neonatal rat. J. Neuropathol. Exp. Neurol. 75:214–226, 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hanlon, L. A., R. Raghupathi, and J. W. Huh. Differential effects of minocycline on microglial activation and neurodegeneration following closed head injury in the neonate rat. Exp. Neurol. 290:1–14, 2017

    Article  CAS  PubMed  Google Scholar 

  22. Hanlon, L. A., R. Raghupathi, and J. W. Huh. Depletion of microglia immediately following traumatic brain injury in the pediatric rat: implications for cellular and behavioral pathology. Exp. Neurol. 316:39–51, 2019

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hua, Y., P. Akula, M. Kelso, and L. Gu. Characterization of closed head impact injury in rat. Biomed. Res. Int. 2015:272976, 2015

    PubMed  PubMed Central  Google Scholar 

  24. Huh, J. W., M. A. Franklin, A. G. Widing, and R. Raghupathi. Regionally distinct patterns of calpain activation and traumatic axonal injury following contusive brain injury in immature rats. Dev. Neurosci. 28:466–476, 2006

    Article  CAS  PubMed  Google Scholar 

  25. Huh, J. W., and R. Raghupathi. Chronic cognitive deficits and long-term histopathological alterations following contusive brain injury in the immature rat. J. Neurotrauma. 24:1460–1474, 2007

    Article  PubMed  Google Scholar 

  26. Huh, J. W., A. G. Widing, and R. Raghupathi. Basic science; repetitive mild non-contusive brain trauma in immature rats exacerbates traumatic axonal injury and axonal calpain activation: a preliminary report. J. Neurotrauma. 24:15–27, 2007

    Article  PubMed  Google Scholar 

  27. Huh, J. W., A. G. Widing, and R. Raghupathi. Midline brain injury in the immature rat induces sustained cognitive deficits, bihemispheric axonal injury and neurodegeneration. Exp. Neurol. 213:84–92, 2008

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huh, J. W., A. G. Widing, and R. Raghupathi. Differential effects of injury severity on cognition and cellular pathology after contusive brain trauma in the immature rat. J. Neurotrauma. 28:245–257, 2010

    Article  Google Scholar 

  29. Jamnia, N., J. H. Urban, G. E. Stutzmann, S. G. Chiren, E. Reisenbigler, R. Marr, D. A. Peterson, and D. A. Kozlowski. A clinically relevant closed-head model of single and repeat concussive injury in the adult rat using a controlled cortical impact device. J. Neurotrauma. 34:1351–1363, 2016

    Article  PubMed  Google Scholar 

  30. Kline, J., and K. H. Reid. Variability of bregma in 300 gram long-Evans and Sprague-Dawley rats. Physiol. Behav. 33:301–303, 1984

    Article  CAS  PubMed  Google Scholar 

  31. Lamprecht, M. R., B. S. Elkin, K. Kesavabhotla, J. F. Crary, J. L. Hammers, J. W. Huh, R. Raghupathi, and B. Morrison. Strong correlation of genome-wide expression after traumatic brain injury in vitro and in vivo implicates a role for sorla. J. Neurotrauma. 34:97–108, 2016

    Article  PubMed  Google Scholar 

  32. LaPlaca, M. C., J. R. Huie, H. B. Alam, A. D. Bachstetter, H. Bayir, P. F. Bellgowan, D. Cummings, C. E. Dixon, A. R. Ferguson, C. Ferland-Beckham, C. L. Floyd, S. H. Friess, A. S. Galanopoulou, E. D. Hall, N. G. Harris, B. E. Hawkins, R. R. Hicks, L. E. Hulbert, V. E. Johnson, P. A. Kabitzke, A. D. Lafrenaye, V. P. Lemmon, C. W. Lifshitz, J. Lifshitz, D. J. Loane, L. Misquitta, V. C. Nikolian, L. J. Noble-Haeusslein, D. H. Smith, C. Taylor-Burds, N. Umoh, O. Vovk, A. M. Williams, M. Young, and L. J. Zai. Pre-clinical common data elements for traumatic brain injury research: progress and use cases. J. Neurotrauma. 38:1399–1410, 2021

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lengel, D., J. W. Huh, J. R. Barson, and R. Raghupathi. Progesterone treatment following traumatic brain injury in the 11-day-old rat attenuates cognitive deficits and neuronal hyperexcitability in adolescence. Exp. Neurol. 330:113329–113329, 2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lengel, D., Z. L. Romm, A. L. Bostwick, J. W. Huh, N. W. Snyder, G. Smith, and R. Raghupathi. Glucocorticoid receptor overexpression in the dorsal hippocampus attenuates spatial learning and synaptic plasticity deficits following pediatric traumatic brain injury. J. Neurotrauma. 2022. https://doi.org/10.1089/neu.2022.0012

    Article  PubMed  Google Scholar 

  35. Levchakov, A., E. Linder-Ganz, R. Raghupathi, S. S. Margulies, and A. Gefen. Computational studies of strain exposures in neonate and mature rat brains during closed head impact. J. Neurotrauma. 23:1570–1580, 2006

    Article  PubMed  Google Scholar 

  36. Maruichi, K., S. Kuroda, Y. Chiba, M. Hokari, H. Shichinohe, K. Hida, and Y. Iwasaki. Graded model of diffuse axonal injury for studying head injury-induced cognitive dysfunction in rats. Neuropathology. 29:132–139, 2009

    Article  PubMed  Google Scholar 

  37. Maruichi, K., S. Kuroda, Y. Chiba, T. Osanai, T. Sugiyama, M. Hokari, K. Hida, and Y. Iwasaki. Transplanted bone marrow stromal cells improve cognitive function after diffuse axonal injury in rats. In: Molecular Imaging for Integrated Medical Therapy and Drug Development, edited by N. Tamaki, and Y. Kuge. Tokyo: Springer, 2010, pp. 158–164

    Chapter  Google Scholar 

  38. McCorkle, T. A., Z. L. Romm, and R. Raghupathi. Repeated mild tbi in adolescent rats reveals sex differences in acute and chronic behavioral deficits. Neuroscience. 493:52–68, 2022

    Article  CAS  PubMed  Google Scholar 

  39. McDaid, J., C. A. Briggs, N. M. Barrington, D. A. Peterson, D. A. Kozlowski, and G. E. Stutzmann. Sustained hippocampal synaptic pathophysiology following single and repeated closed-head concussive impacts. Front. Cell Neurosci. 2021. https://doi.org/10.3389/fncel.2021.652721

    Article  PubMed  PubMed Central  Google Scholar 

  40. Meconi, A., R. C. Wortman, D. K. Wright, K. J. Neale, M. Clarkson, S. R. Shultz, and B. R. Christie. Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats. PLoS ONE. 13:e0197187, 2018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. O’Brien, W. T., L. Pham, R. D. Brady, J. Bain, G. R. Yamakawa, M. Sun, R. Mychasiuk, T. J. O’Brien, M. Monif, S. R. Shultz, and S. J. McDonald. Temporal profile and utility of serum neurofilament light in a rat model of mild traumatic brain injury. Exp. Neurol. 341:113698, 2021

    Article  CAS  PubMed  Google Scholar 

  42. O’Reilly, M. A., A. Muller, and K. Hynynen. Ultrasound insertion loss of rat parietal bone appears to be proportional to animal mass at submegahertz frequencies. Ultrasound Med. Biol. 37:1930–1937, 2011

    Article  PubMed  PubMed Central  Google Scholar 

  43. Osier, N., and C. E. Dixon. The controlled cortical impact model of experimental brain trauma: overview, research applications, and protocol. Methods Mol. Biol. 1462:177–192, 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Osier, N. D., and C. E. Dixon. The controlled cortical impact model: Applications, considerations for researchers, and future directions. Front. Neurol. 7:134–134, 2016

    Article  PubMed  PubMed Central  Google Scholar 

  45. Osier, N., and C. E. Dixon. Mini review of controlled cortical impact: a well-suited device for concussion research. Brain Sci. 7:88, 2017

    Article  PubMed Central  Google Scholar 

  46. Petraglia, A. L., M. L. Dashnaw, R. C. Turner, and J. E. Bailes. Models of mild traumatic brain injury: translation of physiological and anatomic injury. Neurosurgery. 75(Suppl 4):S34-49, 2014

    Article  PubMed  Google Scholar 

  47. Pham, L., S. R. Shultz, H. A. Kim, R. D. Brady, R. C. Wortman, S. G. Genders, M. W. Hale, R. D. O’Shea, E. Djouma, M. van den Buuse, J. E. Church, B. R. Christie, G. R. Drummond, C. G. Sobey, and S. J. McDonald. Mild closed-head injury in conscious rats causes transient neurobehavioral and glial disturbances: a novel experimental model of concussion. J. Neurotrauma. 36:2260–2271, 2019

    Article  PubMed  Google Scholar 

  48. Pham, L., D. K. Wright, W. T. O’Brien, J. Bain, C. Huang, M. Sun, P. M. Casillas-Espinosa, A. D. Shah, R. B. Schittenhelm, C. G. Sobey, R. D. Brady, T. J. O’Brien, R. Mychasiuk, S. R. Shultz, and S. J. McDonald. Behavioral, axonal, and proteomic alterations following repeated mild traumatic brain injury: Novel insights using a clinically relevant rat model. Neurobiol. Dis. 148:105151, 2021

    Article  CAS  PubMed  Google Scholar 

  49. Pinar, C., J. Trivino-Paredes, S. T. Perreault, and B. R. Christie. Hippocampal cognitive impairment in juvenile rats after repeated mild traumatic brain injury. Behav. Brain Res. 387:112585, 2020

    Article  PubMed  Google Scholar 

  50. Prins, M. L., D. Alexander, C. C. Giza, and D. A. Hovda. Repeated mild traumatic brain injury: mechanisms of cerebral vulnerability. J. Neurotrauma. 30:30–38, 2013

    Article  PubMed  PubMed Central  Google Scholar 

  51. Prins, M. L., A. Hales, M. Reger, C. C. Giza, and D. A. Hovda. Repeat traumatic brain injury in the juvenile rat is associated with increased axonal injury and cognitive impairments. Dev. Neurosci. 32:510–518, 2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Raghupathi, R., and J. W. Huh. Diffuse brain injury in the immature rat: evidence for an age-at-injury effect on cognitive function and histopathologic damage. J. Neurotrauma. 24:1596–1608, 2007

    Article  PubMed  Google Scholar 

  53. Romine, J., X. Gao, and J. Chen. Controlled cortical impact model for traumatic brain injury. JoVE. 90:e51781, 2014. https://doi.org/10.3791/51781

    Article  Google Scholar 

  54. Runyan, A., D. Lengel, J. W. Huh, J. R. Barson, and R. Raghupathi. Intranasal administration of oxytocin attenuates social recognition deficits and increases prefrontal cortex inhibitory postsynaptic currents following traumatic brain injury. eNeuro. 2021. https://doi.org/10.1523/ENEURO.0061-0021.2021

    Article  PubMed  PubMed Central  Google Scholar 

  55. Seki T., K. Hida, M. Tada, I. Koyanagi and Y. Iwasaki. Graded contusion model of the mouse spinal cord using a pneumatic impact device. Neurosurgery 50:1075–1081; discussion 1081–1072, 2002.

  56. Sengupta, P. The laboratory rat: relating its age with human’s. Int. J. Prev. Med. 4:624–630, 2013

    PubMed  PubMed Central  Google Scholar 

  57. Smith, D. H., R. R. Hicks, V. E. Johnson, D. A. Bergstrom, D. M. Cummings, L. J. Noble, D. Hovda, M. Whalen, S. T. Ahlers, M. LaPlaca, F. C. Tortella, A.-C. Duhaime, and C. E. Dixon. Pre-clinical traumatic brain injury common data elements: toward a common language across laboratories. J. Neurotrauma. 32:1725–1735, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  58. Späni, C. B., D. J. Braun, and L. J. Van Eldik. Sex-related responses after traumatic brain injury: considerations for preclinical modeling. Front. Neuroendocrinol. 50:52–66, 2018

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tan, A. A., A. Quigley, D. C. Smith, and M. R. Hoane. Strain differences in response to traumatic brain injury in long-Evans compared to Sprague-Dawley rats. J. Neurotrauma. 26:539–548, 2009

    Article  PubMed  PubMed Central  Google Scholar 

  60. Turner, K. M., and T. H. J. Burne. Comprehensive behavioural analysis of long Evans and Sprague-Dawley rats reveals differential effects of housing conditions on tests relevant to neuropsychiatric disorders. PLoS ONE. 9:e93411, 2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Tyburski, A. L., L. Cheng, S. Assari, K. Darvish, and M. B. Elliott. Frequent mild head injury promotes trigeminal sensitivity concomitant with microglial proliferation, astrocytosis, and increased neuropeptide levels in the trigeminal pain system. J. Headache Pain. 18:16–16, 2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wortman, R. C., A. Meconi, K. J. Neale, R. D. Brady, S. J. McDonald, B. R. Christie, D. K. Wright, and S. R. Shultz. Diffusion mri abnormalities in adolescent rats given repeated mild traumatic brain injury. Ann. Clin. Transl. Neurol. 5:1588–1598, 2018

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Traumatic Nerve Technologies (TNT) laboratory at Virginia Tech for their support.

Conflict of interest

The authors disclose no conflicts of interest.

Author information

Authors and Affiliations

Author notes

  1. Caiti-Erin Talty and Carly Norris have contributed equally to this work and are co-first authors.

    Authors

    Corresponding author

    Correspondence to Pamela VandeVord.

    Additional information

    Associate Editor Stefan M. Duma oversaw the review of this article.

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Rights and permissions

    Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Talty, CE., Norris, C. & VandeVord, P. Defining Experimental Variability in Actuator-Driven Closed Head Impact in Rats. Ann Biomed Eng 50, 1187–1202 (2022). https://doi.org/10.1007/s10439-022-03012-0

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s10439-022-03012-0

    Keywords

    Navigation