Skip to main content
Log in

Experimental and Computational Models of Transport of Galectin-3 Through Glycosylated Matrix

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Altered extracellular matrix (ECM) production is a hallmark of many fibroproliferative diseases, including certain cancers. The high incidence of glycan-rich components within altered ECM makes the use of glycan-binding proteins such as Galectin-3 (G3) a promising therapeutic strategy. The complexity of ECM as a rich 3D network of proteins with varied glycosylation states makes it challenging to determine the retention of glycan-binding proteins in altered ECM environments. Computational models capable of predicting the transport of glycan-binding proteins in altered ECM can benefit the design and testing of such proteins and associated novel therapeutic strategies. However, such computational models require many kinetic parameters that cannot be estimated from traditional 2D pharmacokinetic assays. To validate transport properties of G3 in 3D ECM constructs, we developed a species transport model that includes diffusion and matrix-binding components to predict retention of G3 fusion proteins in glycan-rich ECM. By iteratively comparing our computational model to experimental results, we are able to determine a reasonable range of parameters for a robust computational model of G3 transport. We anticipate this overall approach to building a data-driven model is translatable to other ECM-targeting therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ASF:

Asialofetuin

k f :

Association constant

k f_ColIV :

Association constant Collagen IV

k f_Lam :

Association constant Laminin

N :

Available binding sites per molecule

N ColIV :

Available binding sites per molecule of CollagenIV

N Lam :

Available binding sites per molecule of Laminin

Col I:

Collagen Type I

Col IV:

Collagen Type IV

k r :

Dissociation constant

D g :

Effective diffusivity in gel

K D :

Equilibrium dissociation constant

K DColIV :

Equilibrium dissociation constant Collagen IV

C eq :

Equilibrium media concentration of GFP-G3

ϕ :

Fluid volume fraction

G3:

Galectin-3

C 0 :

Initial concentration of GFP-G3 in the gel per unit volume of gel

Lam:

Laminin

C gp :

Molar concentration of glycoprotein

GFP-G3:

Superfolder green fluorescence protein fused to Galectin-3

R free :

Volume average concentration of free ECM receptors for GFP-G3

C bound :

Volume average concentration of GFP-G3 bound to gel

R 0 :

Volume average concentration of the total binding sites in gel

V g :

Volume of gel

V m :

Volume of media

β-lac:

β-Lactose

References

  1. Arumugham, R. G., T. C. Y. Hsieh, M. L. Tanzer, and R. A. Laine. Structures of the asparagine-linked sugar chains of laminin. BBA. 1986. https://doi.org/10.1016/0304-4165(86)90142-X.

    Article  PubMed  Google Scholar 

  2. Banh, A., J. Zhang, H. Cao, D. M. Bouley, S. Kwok, C. Kong, A. J. Giaccia, A. C. Koong, and Q.-T. Le. Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis. Cancer Res. 71:4423–4431, 2011.

    Article  CAS  Google Scholar 

  3. Basak, T., L. Vega-Montoto, L. J. Zimmerman, D. L. Tabb, B. G. Hudson, and R. M. Vanacore. Comprehensive characterization of glycosylation and hydroxylation of basement membrane Collagen IV by high-resolution mass spectrometry. J. Proteome Res. 15:245–258, 2016.

    Article  CAS  Google Scholar 

  4. Betz, P., A. Nerlich, J. Wilske, J. Tübel, I. Wiest, R. Penning, and W. Eisenmenger. Time-dependent pericellular expression of collagen type IV, laminin, and heparan sulfate proteoglycan in myofibroblasts. Int. J. Legal Med. 105:169–172, 1992.

    Article  CAS  Google Scholar 

  5. Böcker, S., and L. Elling. Binding characteristics of galectin-3 fusion proteins. Glycobiology. 27:457–468, 2017.

    PubMed  Google Scholar 

  6. Burkel, B., B. A. Morris, S. M. Ponik, K. M. Riching, K. W. Eliceiri, and P. J. Keely. Preparation of 3D collagen gels and microchannels for the study of 3D interactions in vivo. JoVE. 2016. https://doi.org/10.3791/53989.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Corning. Certificate of Analysis Laminin Mouse, 2019 https://certs-ecatalog.corning.com/life-sciences/certs/354232_8337002.pdf

  8. David, L., J. M. Nesland, R. Holm, and M. Sobrinho-Simões. Expression of laminin, collagen IV, fibronectin, and type IV collagenase in gastric carcinoma. Cancer. 73:518–527, 1994.

    Article  CAS  Google Scholar 

  9. De Kleijn, D. P. V., F. L. Moll, W. E. Hellings, G. Ozsarlak-Sozer, P. De Bruin, P. A. Doevendans, A. Vink, L. M. Catanzariti, A. H. Schoneveld, A. Algra, M. J. Daemen, E. A. Biessen, W. De Jager, H. Zhang, J. P. De Vries, E. Falk, S. K. Lim, P. J. Van Der Spek, S. K. Sze, and G. Pasterkamp. Local atherosclerotic plaques are a source of prognostic biomarkers for adverse cardiovascular events. Arterioscler. Thromb. Vasc. Biol. 30:612–619, 2010.

    Article  Google Scholar 

  10. Dean, J. W., S. Chandrasekaran, and M. L. Tanzer. A biological role of the carbohydrate moieties of laminin. J. Biol. Chem. 265:12553–12562, 1990.

    Article  CAS  Google Scholar 

  11. Duval, K., H. Grover, L. H. Han, Y. Mou, A. F. Pegoraro, J. Fredberg, and Z. Chen. Modeling physiological events in 2D vs. 3D cell culture. Physiology. 32:266–277, 2017.

    Article  CAS  Google Scholar 

  12. Elsayed, Y., C. Lekakou, and P. Tomlins. Monitoring and modelling of oxygen transport through un-crosslinked and crosslinked gelatine gels. Polym. Test. 40:106–115, 2014.

    Article  CAS  Google Scholar 

  13. Elsayed, Y., C. Lekakou, and P. Tomlins. Modeling, simulations, and optimization of smooth muscle cell tissue engineering for the production of vascular grafts. Biotechnol. Bioeng. 116:1509–1522, 2019.

    Article  CAS  Google Scholar 

  14. Farhadi, S. A., E. Bracho-Sanchez, M. M. Fettis, D. T. Seroski, S. L. Freeman, A. Restuccia, B. G. Keselowsky, and G. A. Hudalla. Locally anchoring enzymes to tissues via extracellular glycan recognition. Nat. Commun. 2018. https://doi.org/10.1038/s41467-018-07129-6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Farhadi, S. A., and G. A. Hudalla. Engineering galectin–glycan interactions for immunotherapy and immunomodulation. Exp. Biol. Med. 241:1074–1083, 2016.

    Article  CAS  Google Scholar 

  16. Farhadi, S. A., R. Liu, M. W. Becker, E. A. Phelps, and G. A. Hudalla. Physical tuning of galectin-3 signaling. Proc. Natl. Acad. Sci. USA. 118:1–10, 2021.

    Article  Google Scholar 

  17. Fujiwara, S., H. Shinkai, and R. Timpl. Structure of N-linked oligosaccharide chains in the triple-helical domains of human Type VI and mouse Type IV collagen. Matrix. 1991. https://doi.org/10.1016/S0934-8832(11)80201-5.

    Article  PubMed  Google Scholar 

  18. Fuster, M. M., and J. D. Esko. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer. 5:526–542, 2005.

    Article  CAS  Google Scholar 

  19. Holder, A. J., N. Badiei, K. Hawkins, C. Wright, P. R. Williams, and D. J. Curtis. Control of collagen gel mechanical properties through manipulation of gelation conditions near the sol–gel transition. Soft Matter. 14:574–580, 2018.

    Article  CAS  Google Scholar 

  20. Hughes, C. S., L. M. Postovit, and G. A. Lajoie. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 10:1886–1890, 2010.

    Article  CAS  Google Scholar 

  21. Imamura, Y., T. Mukohara, Y. Shimono, Y. Funakoshi, N. Chayahara, M. Toyoda, N. Kiyota, S. Takao, S. Kono, T. Nakatsura, and H. Minami. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol. Rep. 33:1837–1843, 2015.

    Article  CAS  Google Scholar 

  22. Kölbl, A. C., U. Andergassen, and U. Jeschke. The role of glycosylation in breast cancer metastasis and cancer control. Front. Oncol. 5:1–5, 2015.

    Article  Google Scholar 

  23. Lee, C. S., J. Montebello, T. Georgiou, and J. Rode. Distribution of type IV collagen in pancreatic adenocarcinoma and chronic pancreatitis. Int. J. Exp. Pathol. 75:79–83, 1994.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lepur, A., E. Salomonsson, U. J. Nilsson, and H. Leffler. Ligand induced galectin-3 protein self-association. J. Biol. Chem. 287:21751–21756, 2012.

    Article  CAS  Google Scholar 

  25. Löhr, M., B. Trautmann, M. Göttler, S. Peters, I. Zauner, B. Maillet, and G. Klöppel. Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins. Br. J. Cancer. 69:144–151, 1994.

    Article  Google Scholar 

  26. Miller, M. C., H. Ippel, D. Suylen, A. A. Klyosov, P. G. Traber, T. Hackeng, and K. H. Mayo. Binding of polysaccharides to human galectin-3 at a noncanonical site in its carbohydrate recognition domain. Glycobiology. 26:88–99, 2015.

    Article  Google Scholar 

  27. Ochieng, J., R. Fridman, P. Nangia-Makker, D. E. Kleiner, L. A. Liotta, W. G. Stetler-Stevenson, and A. Raz. Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry. 33:14109–14114, 1994.

    Article  CAS  Google Scholar 

  28. Ochieng, J., V. Furtak, and P. Lukyanov. Extracellular functions of galectin-3. Glycoconj. J. 19:527–535, 2002.

    Article  CAS  Google Scholar 

  29. Ochieng, J., M. L. Leite-Browning, and P. Warfield. Regulation of cellular adhesion to extracellular matrix proteins by galectin-3. Biochem. Biophys. Res. Commun. 246:788–791, 1998.

    Article  CAS  Google Scholar 

  30. Ochieng, J., and P. Warfield. Galectin-3 binding potentials of mouse tumor EHS and human placental laminins. Biochem. Biophys. Res. Commun. 217:402–406, 1995.

    Article  CAS  Google Scholar 

  31. Petrini, I., S. Barachini, V. Carnicelli, S. Galimberti, L. Modeo, R. Boni, M. Sollini, and P. A. Erba. ED-B fibronectin expression is a marker of epithelial-mesenchymal transition in translational oncology. Oncotarget. 8:4914–4921, 2017.

    Article  Google Scholar 

  32. Seo, B. R., X. Chen, L. Ling, Y. H. Song, A. A. Shimpi, S. Choi, J. Gonzalez, J. Sapudom, K. Wang, R. C. Andresen Eguiluz, D. Gourdon, V. B. Shenoy, and C. Fischbach. Collagen microarchitecture mechanically controls myofibroblast differentiation. Proc. Natl. Acad. Sci. 117:11387–11398, 2020.

    Article  CAS  Google Scholar 

  33. Sigma Aldrich. Human Collagen Type IV Purified Protein. 92590, 2013 https://www.emdmillipore.com/US/en/product/Human-Collagen-Type-IV,MM_NF-CC076#overview

  34. Sykova, E., and C. Nicholsn. Diffusion in brain extracellular space. Am. Physiol. Soc. 88:1–4, 2008.

    Google Scholar 

  35. Tang, D., Z. Yuan, X. Xue, Z. Lu, Y. Zhang, H. Wang, M. Chen, Y. An, J. Wei, Y. Zhu, Y. Miao, and K. Jiang. High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer. Int. J. Cancer. 130:2337–2348, 2012.

    Article  CAS  Google Scholar 

  36. Terajima, M., I. Perdivara, M. Sricholpech, Y. Deguchi, N. Pleshko, K. B. Tomer, and M. Yamauchi. Glycosylation and cross-linking in bone type I collagen. J. Biol. Chem. 289:22636–22647, 2014.

    Article  CAS  Google Scholar 

  37. Varki, A., R. Cummings, J. Esko, H. Freeze, G. Hart, and J. Marth. Essentials of Glycobiology. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 2009.

    Google Scholar 

  38. Xiao, J., W. Yang, B. Xu, H. Zhu, J. Zou, C. Su, J. Rong, T. Wang, and Z. Chen. Expression of fibronectin in esophageal squamous cell carcinoma and its role in migration. BMC Cancer. 18:1–9, 2018.

    Article  Google Scholar 

  39. Yang, R. Y., G. A. Rabinovich, and F. T. Liu. Galectins: structure, function and therapeutic potential. Expert Rev. Mol. Med. 10:1–24, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Natalie Fredette and John Sansalone for their technical assistance preparing initial Galectin 3 experiments. We also thank Edwin Rajeev for his assistance developing initial computational transport models.

Author Contributions

CSS conceived of the project and, in collaboration with MS and GAH, oversaw overall direction, planning experiments, data analysis, and writing and editing the manuscript. JPLL contributed to the experimental design, conducted the experimental measurements, analyzed the data, and contributed to the manuscript’s writing and figure design. SAF contributed to the fabrication of G3 fusion protein and the development of protocols for several experiments. CR performed the computational simulations for the sensitivity analysis and contributed to data analysis. MS derived the computational models, conducted computational simulations, analyzed data, and contributed to writing and editing the manuscript. GAH contributed to the development of protocols for several experiments, provided guidance, and contributed to the interpretation of the results. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Funding

This work was partially funded by the National Institutes of Health [R03 EB019684 to G.A.H]; National Institutes of Health-National Center for Advancing Translational Sciences under the University of Florida Clinical and Translational Award [TL1TR001428 to S.A.F]; and the UF Research Opportunity Seed Fund [to M.S.].

Conflict of interest

Dr.Gregory A. Hudalla is a founder, scientific advisory member, and stockholder of Anchor Biologics, Inc. which is developing technologies related to galectin fusion proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelsey S. Simmons.

Additional information

Associate Editor Shayn Peirce-Cottler oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piñeiro-Llanes, J., Rodriguez, C.D., Farhadi, S.A. et al. Experimental and Computational Models of Transport of Galectin-3 Through Glycosylated Matrix. Ann Biomed Eng 50, 703–715 (2022). https://doi.org/10.1007/s10439-022-02949-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02949-6

Keywords

Navigation