Skip to main content
Log in

Inflammation Drives Stiffness Mediated Uptake of Lipoproteins in Primary Human Macrophages and Foam Cell Proliferation

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Macrophage to foam cell transition and their accumulation in the arterial intima are the key events that trigger atherosclerosis, a multifactorial inflammatory disease. Previous studies have linked arterial stiffness and cardiovascular disease and have highlighted the use of arterial stiffness as a potential early-stage marker. Yet the relationship between arterial stiffness and atherosclerosis in terms of macrophage function is poorly understood. Thus, it is pertinent to understand the mechanobiology of macrophages to clarify their role in plaque advancement. We explore how substrate stiffness affects proliferation of macrophages and foam cells, traction forces exerted by macrophages and uptake of native and oxidized low-density lipoproteins. We demonstrate that stiffness influences foam cell proliferation under both naïve and inflammatory conditions. Naïve foam cells proliferated faster on the 4 kPa polyacrylamide gel and glass whereas under inflammatory conditions, maximum proliferation was recorded on glass. Macrophage and foam cell traction forces were positively correlated to the substrate stiffness. Furthermore, the influence of stiffness was demonstrated on the uptake of lipoproteins on macrophages treated with lipopolysaccharide + interferon gamma. Cells on softer 1 kPa substrates had a significantly higher uptake of low-density lipoproteins and oxidized low-density lipoproteins compared to stiffer substrates. The results herein indicate that macrophage function is modulated by stiffness and help better understand ways in which macrophages and foam cells could contribute to the development and progression of atherosclerotic plaque.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Adlerz, K. M., H. Aranda-Espinoza, and H. N. Hayenga. Substrate elasticity regulates the behavior of human monocyte-derived macrophages. Eur. Biophys. J. 45(4):301–309, 2016. https://doi.org/10.1007/s00249-015-1096-8.

    Article  CAS  PubMed  Google Scholar 

  2. Avolio, A. P., S. G. Chen, R. P. Wang, C. L. Zhang, M. F. Li, and M. F. O’Rourke. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation. 68(1):50–58, 1983. https://doi.org/10.1161/01.CIR.68.1.50.

    Article  CAS  PubMed  Google Scholar 

  3. Benjamin, E. J., et al. Heart Disease and Stroke Statistics ’2017 Update: a report from the American Heart Association. Circulation. 135(10):e146–e603, 2017.

    Article  Google Scholar 

  4. Blacher, J., B. Pannier, A. P. Guerin, S. J. Marchais, M. E. Safar, and G. M. London. Carotid arterial stiffness as a predictor of cardiovascular and all-cause mortality in end-stage renal disease. Hypertension. 32(3):570–574, 1998. https://doi.org/10.1161/01.HYP.32.3.570.

    Article  CAS  PubMed  Google Scholar 

  5. Cecelja, M., and P. Chowienczyk. Role of arterial stiffness in cardiovascular disease. JRSM Cardiovasc. Dis. 1(4):1–10, 2012. https://doi.org/10.1258/cvd.2012.012016.

    Article  Google Scholar 

  6. Chen, M., et al. Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-κB signaling pathway. Bioact. Mater. 5(4):880–890, 2020. https://doi.org/10.1016/j.bioactmat.2020.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Drew, A. F., and P. G. Tipping. T helper cell infiltration and foam cell proliferation are early events in the development of atherosclerosis in cholesterol-fed rabbits. Arterioscler. Thromb. Vasc. Biol. 15(10):1563–1568, 1995. https://doi.org/10.1161/01.ATV.15.10.1563.

    Article  CAS  PubMed  Google Scholar 

  8. Engler, A. J., M. A. Griffin, S. Sen, C. G. Bönnemann, H. L. Sweeney, and D. E. Discher. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166(6):877–887, 2004. https://doi.org/10.1083/jcb.200405004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frank, P. G., H. Lee, D. S. Park, N. N. Tandon, P. E. Scherer, and M. P. Lisanti. Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24(1):98–105, 2004. https://doi.org/10.1161/01.ATV.0000101182.89118.E5.

    Article  CAS  PubMed  Google Scholar 

  10. Goswami, R., et al. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation. Free Radic. Biol. Med. 110(April):142–150, 2017. https://doi.org/10.1016/j.freeradbiomed.2017.06.004.

    Article  CAS  PubMed  Google Scholar 

  11. Gotschy, A., et al. Local arterial stiffening assessed by MRI precedes atherosclerotic plaque formation. Circ. Cardiovasc. Imaging. 6(6):916–923, 2013. https://doi.org/10.1161/CIRCIMAGING.113.000611.

    Article  PubMed  Google Scholar 

  12. Hall, M. S., et al. Fibrous nonlinear elasticity enables positive: mechanical feedback between cells and ECMs. Proc. Natl Acad. Sci. U. S. A. 113(49):14043–14048, 2016. https://doi.org/10.1073/pnas.1613058113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hansen, L., and W. R. Taylor. Is increased arterial stiffness a cause or consequence of atherosclerosis? Atherosclerosis. 249:226–227, 2016. https://doi.org/10.1016/j.atherosclerosis.2016.04.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hind, L. E., M. Dembo, and D. A. Hammer. Macrophage motility is driven by frontal-towing with a force magnitude dependent on substrate stiffness. Integr. Biol. (U.K.). 7(4):447–453, 2015. https://doi.org/10.1039/c4ib00260a.

    Article  CAS  Google Scholar 

  15. Holvoet, P., et al. Identifying patients with coronary artery disease. Atheroscler. Thromb. Vasc. Biol. 21:844–848, 2001.

    Article  CAS  Google Scholar 

  16. Hui, K. L., L. Balagopalan, L. E. Samelson, and A. Upadhyaya. Cytoskeletal forces during signaling activation in Jurkat T-cells. Mol. Biol. Cell. 26(4):685–695, 2015. https://doi.org/10.1091/mbc.E14-03-0830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Irwin, E. F., K. Saha, M. Rosenbluth, L. J. Gamble, D. G. Castner, and K. E. Healy. Modulus-dependent macrophage adhesion and behavior. J. Biomater. Sci. Polym. Ed. 19(10):1363–1382, 2008.

    Article  CAS  Google Scholar 

  18. Kraning-Rush, C. M., J. P. Califano, and C. A. Reinhart-King. Cellular traction stresses increase with increasing metastatic potential. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0032572.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lamharzi, N., et al. Hyperlipidemia in concert with hyperglycemia stimulates the proliferation of macrophages in atherosclerotic lesions: Potential role of glucose-oxidized LDL. Diabetes. 53(12):3217–3225, 2004. https://doi.org/10.2337/diabetes.53.12.3217.

    Article  CAS  PubMed  Google Scholar 

  20. Le Master, E., S. J. Ahn, and I. Levitan. Mechanisms of endothelial stiffening in dyslipidemia and aging: Oxidized lipids and shear stress. Curr. Top. Membr. 86:185–215, 2020. https://doi.org/10.1016/bs.ctm.2020.08.006.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li, J., et al. miRNA-mediated macrophage behaviors responding to matrix stiffness and ox-LDL. J. Cell. Physiol. 235(9):6139–6153, 2020. https://doi.org/10.1002/jcp.29543.

    Article  CAS  PubMed  Google Scholar 

  22. Libby, P., P. M. Ridker, and A. Maseri. Inflammation and atherosclerosis. Circulation. 105(9):1135–1143, 2002. https://doi.org/10.1161/hc0902.104353.

    Article  CAS  PubMed  Google Scholar 

  23. Lo Sardo, V., et al. Unveiling the role of the most impactful cardiovascular risk locus through haplotype editing. Cell. 175(7):1796-1810.e20, 2018. https://doi.org/10.1016/j.cell.2018.11.014.

    Article  CAS  PubMed  Google Scholar 

  24. London, G. M., et al. Cardiac and arterial interactions in end-stage renal disease. Kidney Int. 50(2):600–608, 1996. https://doi.org/10.1038/ki.1996.355.

    Article  CAS  PubMed  Google Scholar 

  25. Mangge, H. Antioxidants, inflammation and cardiovascular disease. World J. Cardiol. 6(6):462, 2014. https://doi.org/10.4330/wjc.v6.i6.462.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marinkovic, A., J. D. Mih, J. A. Park, F. Liu, and D. J. Tschumperlin. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012. https://doi.org/10.1152/ajplung.00108.2012.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Martinez, F. O., et al. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood. 121(9):57–69, 2013. https://doi.org/10.1182/blood-2012-06-436212.

    Article  CAS  Google Scholar 

  28. Mathur, A. B., A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. Truskey. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 34(12):1545–1553, 2001. https://doi.org/10.1016/S0021-9290(01)00149-X.

    Article  CAS  PubMed  Google Scholar 

  29. Mattace-Raso, F. U. S., et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 113(5):657–663, 2006. https://doi.org/10.1161/CIRCULATIONAHA.105.555235.

    Article  PubMed  Google Scholar 

  30. McKenzie, A. J., S. R. Hicks, K. V. Svec, H. Naughton, Z. L. Edmunds, and A. K. Howe. The mechanical microenvironment regulates ovarian cancer cell morphology, migration, and spheroid disaggregation. Sci. Rep. 8(1):1–21, 2018. https://doi.org/10.1038/s41598-018-25589-0.

    Article  CAS  Google Scholar 

  31. Mekhdjian, A. H., et al. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Mol. Biol. Cell. 28(11):1467–1488, 2017. https://doi.org/10.1091/mbc.E16-09-0654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moeller, A., K. Ask, D. Warburton, J. Gauldie, and M. Kolb. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol. 40(3):362–382, 2008. https://doi.org/10.1016/j.biocel.2007.08.011.

    Article  CAS  PubMed  Google Scholar 

  33. Moore, K. J., F. J. Sheedy, and E. A. Fisher. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13(10):709–721, 2013. https://doi.org/10.1038/nri3520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Müller, C., and T. Pompe. Distinct impacts of substrate elasticity and ligand affinity on traction force evolution. Soft Matter. 12(1):272–280, 2015. https://doi.org/10.1039/c5sm01706h.

    Article  Google Scholar 

  35. Okamoto, T., et al. Reduced substrate stiffness promotes M2-like macrophage activation and enhances peroxisome proliferator-activated receptor γ expression. Exp. Cell Res. 367(2):264–273, 2018. https://doi.org/10.1016/j.yexcr.2018.04.005.

    Article  CAS  PubMed  Google Scholar 

  36. Patel, N. R., et al. Cell elasticity determines macrophage function. PLoS ONE. 7(9):1–10, 2012. https://doi.org/10.1371/journal.pone.0041024.

    Article  CAS  Google Scholar 

  37. Pelham, R. J., and Y. L. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. U. S. A. 94(25):13661–13665, 1997. https://doi.org/10.1073/pnas.94.25.13661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peloquin, J., J. Huynh, R. M. Williams, and C. A. Reinhart-King. Indentation measurements of the subendothelial matrix in bovine carotid arteries. J. Biomech. 44(5):815–821, 2011. https://doi.org/10.1016/j.jbiomech.2010.12.018.

    Article  PubMed  Google Scholar 

  39. Radmacher, M., M. Fritz, C. M. Kacher, J. P. Cleveland, and P. K. Hansma. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70(1):556–567, 1996. https://doi.org/10.1016/S0006-3495(96)79602-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Razafiarison, T., et al. Biomaterial surface energy-driven ligand assembly strongly regulates stem cell mechanosensitivity and fate on very soft substrates. Proc. Natl Acad. Sci. U. S. A. 115(18):4631–4636, 2018. https://doi.org/10.1073/pnas.1704543115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robbins, C. S., et al. Accumulation in atherosclerosis. Nat. Med. 19(9):1166–1172, 2014. https://doi.org/10.1038/nm.3258.Local.

    Article  Google Scholar 

  42. Ross, R. Inflammation or atherogenesis. N. Engl. J. Med. 340(1999):115–126, 1999.

    Article  CAS  Google Scholar 

  43. Rougerie, P., and D. Cox. Spatio-temporal mapping of mechanical force generated by macrophages during FcγR-dependent phagocytosis reveals adaptation to target stiffness. bioRxiv. 2020. https://doi.org/10.1101/2020.04.14.041335.

    Article  Google Scholar 

  44. Sakai, M., S. Kobori, A. Miyazaki, and S. Horiuchi. Macrophage proliferation in atherosclerosis. Curr. Opin. Lipidol. 11(5):503–509, 2000.

    Article  CAS  Google Scholar 

  45. Sato, M., K. Nagayama, N. Kataoka, M. Sasaki, and K. Hane. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33(1):127–135, 2000. https://doi.org/10.1016/S0021-9290(99)00178-5.

    Article  CAS  PubMed  Google Scholar 

  46. Scott, R. A., K. L. Kiick, and R. E. Akins. Substrate stiffness directs the phenotype and polarization state of cord blood derived macrophages. Acta Biomater. 122:220–235, 2021. https://doi.org/10.1016/j.actbio.2020.12.040.

    Article  CAS  PubMed  Google Scholar 

  47. Shiffman, D., et al. Large scale gene expression analysis of cholesterol-loaded macrophages. J. Biol. Chem. 275(48):37324–37332, 2000. https://doi.org/10.1074/jbc.M004732200.

    Article  CAS  PubMed  Google Scholar 

  48. Song, Z., et al. Identification of foam cell biomarkers by microarray analysis. BMC Cardiovasc. Disord. 20(1):1–9, 2020. https://doi.org/10.1186/s12872-020-01495-0.

    Article  CAS  PubMed Central  Google Scholar 

  49. Spann, N. J., et al. “Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell. 151(1):138–152, 2013. https://doi.org/10.1016/j.cell.2012.06.054.Regulated.

    Article  Google Scholar 

  50. Spiller, K. L., et al. Differential gene expression in human, murine, and cell line-derived macrophages upon polarization. Exp. Cell Res. 347(1):1–13, 2016. https://doi.org/10.1016/j.yexcr.2015.10.017.

    Article  CAS  PubMed  Google Scholar 

  51. Sridharan, R., B. Cavanagh, A. R. Cameron, D. J. Kelly, and F. J. O’Brien. Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater. 89:47–59, 2019. https://doi.org/10.1016/j.actbio.2019.02.048.

    Article  CAS  PubMed  Google Scholar 

  52. Stehouwer, C. D. A., R. M. A. Henry, and I. Ferreira. Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia. 51(4):527–539, 2008. https://doi.org/10.1007/s00125-007-0918-3.

    Article  CAS  PubMed  Google Scholar 

  53. Tedla, Y. G., Y. Yano, M. Carnethon, and P. Greenland. Association between long-term blood pressure variability and 10-year progression in arterial stiffness. Hypertension. 69(1):118–127, 2017. https://doi.org/10.1161/HYPERTENSIONAHA.116.08427.

    Article  CAS  PubMed  Google Scholar 

  54. Thumkeo, D., et al. Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol. Cell. Biol. 23(14):5043–5055, 2003. https://doi.org/10.1128/mcb.23.14.5043-5055.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tracqui, P., A. Broisat, J. Toczek, N. Mesnier, J. Ohayon, and L. Riou. Mapping elasticity moduli of atherosclerotic plaque in situ via atomic force microscopy. J. Struct. Biol. 174(1):115–123, 2011. https://doi.org/10.1016/j.jsb.2011.01.010.

    Article  PubMed  Google Scholar 

  56. Trichet, L., et al. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc. Natl Acad. Sci. U. S. A. 109(18):6933–6938, 2012. https://doi.org/10.1073/pnas.1117810109.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vappou, J., J. Luo, and E. E. Konofagou. Pulse wave imaging for noninvasive and quantitative measurement of arterial stiffness in vivo. Am. J. Hypertens. 23(4):393–398, 2010. https://doi.org/10.1038/ajh.2009.272.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wada, T., et al. Correlation of ultrasound-measured common carotid artery stiffness with pathological findings. Arterioscler. Thromb. 14(3):479–482, 1994. https://doi.org/10.1161/01.atv.14.3.479.

    Article  CAS  PubMed  Google Scholar 

  59. Wang, A. Y. M. Cardiovascular risk in diabetic end-stage renal disease patients. J. Diabetes. 3(2):119–131, 2011. https://doi.org/10.1111/j.1753-0407.2011.00113.x.

    Article  PubMed  Google Scholar 

  60. Wilkinson, I. B., and C. M. Mceniery. Arterial stiffness, endothelial function and novel pharmacological approaches. Pulse. 31(11):795–799, 2003.

    Google Scholar 

  61. Zhou, D. W., T. T. Lee, S. Weng, J. Fu, and A. J. García. Effects of substrate stiffness and actomyosin contractility on coupling between force transmission and vinculin-paxillin recruitment at single focal adhesions. Mol. Biol. Cell. 28(14):1901–1911, 2017. https://doi.org/10.1091/mbc.E17-02-0116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank laboratory members Maziyar Keshavarzian, Alyssa Lamberti, Kaylie Kruppa, Dhivya Addula, Julia Mach for their assistance in imaging and FACS experimentation and analysis. We also thank Jacob Henderson from the Flow cytometry Core for helping with the FACS experiments. Lastly, we are extremely grateful to Dr. Adam J. Engler and Jaimie Mayner for providing us with the TimelapseTFMcode for the traction force data analysis.

Funding

This work was supported by the National Heart, Lung, And Blood Institute of the National Institutes of Health (NIH) under award number R01HL136776, and American Heart Association (AHA) under Award No. 17SDG33400239. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or AHA.

Conflict of Interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather N. Hayenga.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammanamanchi, M., Maurer, M. & Hayenga, H.N. Inflammation Drives Stiffness Mediated Uptake of Lipoproteins in Primary Human Macrophages and Foam Cell Proliferation. Ann Biomed Eng 49, 3425–3437 (2021). https://doi.org/10.1007/s10439-021-02881-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02881-1

Keywords

Navigation