Skip to main content
Log in

Estimation of Spinal Loading During Manual Materials Handling Using Inertial Motion Capture

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Musculoskeletal models have traditionally relied on measurements of segment kinematics and ground reaction forces and moments (GRF&Ms) from marked-based motion capture and floor-mounted force plates, which are typically limited to laboratory settings. Recent advances in inertial motion capture (IMC) as well as methods for predicting GRF&Ms have enabled the acquisition of these input data in the field. Therefore, this study evaluated the concurrent validity of a novel methodology for estimating the dynamic loading of the lumbar spine during manual materials handling based on a musculoskeletal model driven exclusively using IMC data and predicted GRF&Ms. Trunk kinematics, GRF&Ms, L4–L5 joint reaction forces (JRFs) and erector spinae muscle forces from 13 subjects performing various lifting and transferring tasks were compared to a model driven by simultaneously recorded skin-marker trajectories and force plate data. Moderate to excellent correlations and relatively low magnitude differences were found for the L4–L5 axial compression, erector spinae muscle and vertical ground reaction forces during symmetrical and asymmetrical lifting, but discrepancies were also identified between the models, particularly for the trunk kinematics and L4–L5 shear forces. Based on these results, the presented methodology can be applied for estimating the relative L4–L5 axial compression forces under dynamic conditions during manual materials handling in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

GRF&Ms:

Ground reaction forces and moments

IMC:

Inertial motion capture

JRF:

Joint reaction force

IDA:

Inverse dynamic analysis

OMC:

Optical motion capture

GRF:

Ground reaction force

IMU:

Inertial measurement unit

OMC-MGRF:

Optical motion capture with measured ground reaction forces

OMC-PGRF:

Optical motion capture with predicted ground reaction forces

IMC-PGRF:

Inertial motion capture with predicted ground reaction forces

GRM:

Ground reaction moment

%BW:

Percentage of body weight

%BW*BH:

Percentage of body weight times body height

RMSE:

Root-mean-square error

rRMSE:

Relative root-mean-square error

ICC:

Intraclass correlation coefficient

LoA:

Limits of agreement

References

  1. Andersen, M. S., M. Damsgaard, B. MacWilliams, and J. Rasmussen. A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems. Comput. Methods Biomech. Biomed. Eng. 13:171–183, 2010.

    Article  CAS  Google Scholar 

  2. Andersen, M. S., M. Damsgaard, and J. Rasmussen. Kinematic analysis of over-determinate biomechanical systems. Comput. Methods Biomech. Biomed. Eng. 12:371–384, 2009.

    Article  CAS  Google Scholar 

  3. Arshad, R., T. Zander, M. Dreischarf, and H. Schmidt. Influence of lumbar spine rhythms and intra-abdominal pressure on spinal loads and trunk muscle forces during upper body inclination. Med. Eng. Phys. 38:333–338, 2016.

    Article  Google Scholar 

  4. Bassani, T., E. Stucovitz, Z. Qian, M. Briguglio, and F. Galbusera. Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level. J. Biomech. 58:89–96, 2017.

    Article  Google Scholar 

  5. Bland, M. J., and G. D. Altman. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 8:135–160, 1999.

    Article  CAS  Google Scholar 

  6. Carbone, V., R. Fluit, P. Pellikaan, M. M. van der Krogt, D. Janssen, M. Damsgaard, L. Vigneron, T. Feilkas, H. F. J. M. Koopman, and N. Verdonschot. TLEM 2.0—a comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity. J. Biomech. 48:734–741, 2015.

    Article  CAS  Google Scholar 

  7. de Zee, M., L. Hansen, C. Wong, J. Rasmussen, and E. B. Simonsen. A generic detailed rigid-body lumbar spine model. J. Biomech. 40:1219–1227, 2007.

    Article  Google Scholar 

  8. Deyo, R. A., and J. N. Weinstein. Low back pain. N. Engl. J. Med. 344:363–370, 2001.

    Article  CAS  Google Scholar 

  9. Dreischarf, M., A. Shirazi-Adl, N. Arjmand, A. Rohlmann, and H. Schmidt. Estimation of loads on human lumbar spine: a review of in vivo and computational model studies. J. Biomech. 49:833–845, 2016.

    Article  Google Scholar 

  10. Faber, G. S., C. C. Chang, I. Kingma, J. T. Dennerlein, and J. H. van Dieën. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system. J. Biomech. 49:904–912, 2016.

    Article  CAS  Google Scholar 

  11. Faber, G. S., I. Kingma, N. Delleman, and J. van Dieën. Effect of ship motion on spinal loading during manual lifting. Ergonomics 51:1426–1440, 2008.

    Article  Google Scholar 

  12. Filippeschi, A., N. Schmitz, M. Miezal, G. Bleser, E. Ruffaldi, and D. Stricker. Survey of motion tracking methods based on inertial sensors: a focus on upper limb human motion. Sensors 17:1257, 2017.

    Article  Google Scholar 

  13. Fluit, R., M. S. Andersen, S. Kolk, N. Verdonschot, and H. F. Koopman. Prediction of ground reaction forces and moments during various activities of daily living. J. Biomech. 47:2321–2329, 2014.

    Article  CAS  Google Scholar 

  14. Frankenfield, D. C., W. A. Rowe, R. N. Cooney, J. S. Smith, and D. Becker. Limits of body mass index to detect obesity and predict body composition. Nutrition 17:26–30, 2001.

    Article  CAS  Google Scholar 

  15. Galibarov, P. E., S. Dendorfer, and J. Rasmussen. Two computational models of the lumbar spine: comparison and validation. In: ORS Annual Meeting 2011, 2011.

  16. Gallagher, S., and W. S. Marras. Tolerance of the lumbar spine to shear: a review and recommended exposure limits. Clin. Biomech. 27:973–978, 2012.

    Article  Google Scholar 

  17. Han, K. S., T. Zander, W. R. Taylor, and A. Rohlmann. An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Med. Eng. Phys. 34:709–716, 2012.

    Article  Google Scholar 

  18. Hansen, L., M. De Zee, J. Rasmussen, T. B. Andersen, C. Wong, and E. B. Simonsen. Anatomy and biomechanics of the back muscles in the lumbar spine with reference to biomechanical modeling. Spine (Phila. Pa. 1976) 31:1888–1899, 2006.

    Article  Google Scholar 

  19. Ignasiak, D., S. J. Ferguson, and N. Arjmand. A rigid thorax assumption affects model loading predictions at the upper but not lower lumbar levels. J. Biomech. 49:3074–3078, 2016.

    Article  Google Scholar 

  20. Karatsidis, A., G. Bellusci, H. Schepers, M. de Zee, M. Andersen, and P. Veltink. Estimation of ground reaction forces and moments during gait using only inertial motion capture. Sensors 17:75, 2016.

    Article  Google Scholar 

  21. Karatsidis, A., M. Jung, H. M. Schepers, G. Bellusci, M. de Zee, P. H. Veltink, and M. S. Andersen. Musculoskeletal model-based inverse dynamic analysis under ambulatory conditions using inertial motion capture. Med. Eng. Phys. 57:1–31, 2019.

    Article  Google Scholar 

  22. Koning, B. H. W., M. M. van der Krogt, C. T. M. Baten, and B. F. J. M. Koopman. Driving a musculoskeletal model with inertial and magnetic measurement units. Comput. Methods Biomech. Biomed. Eng. 18:1003–1013, 2015.

    Article  Google Scholar 

  23. Koo, T. K., and M. Y. Li. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15:155–163, 2016.

    Article  Google Scholar 

  24. Leardini, A., A. Chiari, U. DellaCroce, and A. Cappozzo. Human movement analysis using stereophotogrammetry, Part 3 Soft tissue artifact assessment and compensation. Gait Posture 21:212–225, 2005.

    Article  Google Scholar 

  25. McLaughlin, P. Testing agreement between a new method and the gold standard-How do we test? J. Biomech. 46:2757–2760, 2013.

    Article  Google Scholar 

  26. Meldrum, D., C. Shouldice, R. Conroy, K. Jones, and M. Forward. Test–retest reliability of three dimensional gait analysis: including a novel approach to visualising agreement of gait cycle waveforms with Bland and Altman plots. Gait Posture 39:265–271, 2014.

    Article  Google Scholar 

  27. Moisio, K. C., D. R. Sumner, S. Shott, and D. E. Hurwitz. Normalization of joint moments during gait: a comparison of two techniques. J. Biomech. 36:599–603, 2003.

    Article  Google Scholar 

  28. NIOSH. Work Practices Guide for Manual Lifting. Washington, DC: NIOSH, 1981.

    Google Scholar 

  29. Rajaee, M. A., N. Arjmand, A. Shirazi-Adl, A. Plamondon, and H. Schmidt. Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities. Appl. Ergon. 48:22–32, 2015.

    Article  Google Scholar 

  30. Rasmussen, J., M. de Zee, and S. Carbes. Validation of a biomechanical model to the lumbar spine. In Proceedings, XXIInd Congress of the International Society of Biomechanics, 5–9 July 2009, Cape Town, South Africa, 2009.

  31. Rasmussen, J., M. De Zee, M. Damsgaard, S. Tørholm Christensen, C. Marek, and K. Siebertz. A general method for scaling musculo-skeletal models. In 2005 International Symposium on Computer Simulation in Biomechanics, Cleveland, OH, vol. 3, 2005.

  32. Ren, L., R. K. Jones, and D. Howard. Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J. Biomech. 41:2750–2759, 2008.

    Article  Google Scholar 

  33. Roetenberg, D., H. J. Luinge, and P. Slycke. Xsens MVN: Full 6DOF human motion tracking using miniature inertial sensors. Technical Report. Xsens Motion Technologies BV, Enschede, The Netherlands, 2013.

  34. Shrout, P. E., and J. L. Fleiss. Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86:420–428, 1979.

    Article  CAS  Google Scholar 

  35. Skals, S., M. K. Jung, M. Damsgaard, and M. S. Andersen. Prediction of ground reaction forces and moments during sports-related movements. Multibody Syst. Dyn. 39:175–195, 2017.

    Article  Google Scholar 

  36. Skals, S., K. P. Rasmussen, K. M. Bendtsen, J. Yang, and M. S. Andersen. A musculoskeletal model driven by dual Microsoft Kinect Sensor data. Multibody Syst. Dyn. 41:297–316, 2017.

    Article  Google Scholar 

  37. Van der Helm, F. C. T., H. E. J. Veeger, G. M. Pronk, L. H. V. Van der Woude, and R. H. Rozendal. Geometry parameters for musculoskeletal modelling of the shoulder system. J. Biomech. 25:129–144, 1992.

    Article  Google Scholar 

  38. Van Dieën, J. H. H., H. Weinans, and H. M. M. Toussaint. Fractures of the lumbar vertebral endplate in the etiology of low back pain: a hypothesis on the causative role of spinal compression in aspecific low back pain. Med. Hypotheses 53:246–252, 1999.

    Article  Google Scholar 

  39. Veeger, H. E. J., F. C. T. Van Der Helm, L. H. V. Van Der Woude, G. M. Pronk, and R. H. Rozendal. Inertia and muscle-contraction parameters for musculoskeletal modeling of the shoulder mechanism. J. Biomech. 24:615, 1991.

    Article  CAS  Google Scholar 

  40. Veeger, H. E. J., B. Yu, K. N. An, and R. H. Rozendal. Parameters for modeling the upper extremity. J. Biomech. 30:647–652, 1997.

    Article  CAS  Google Scholar 

  41. Veltink, P. H., C. Liedtke, E. Droog, and H. Van Der Kooij. Ambulatory measurement of ground reaction forces. IEEE Trans. Neural Syst. Rehabil. Eng. 13:423–427, 2005.

    Article  Google Scholar 

  42. Waters, T. R., V. Putz-Anderson, A. Garg, and L. J. Fine. Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 36:749–776, 1993.

    Article  CAS  Google Scholar 

  43. Wilke, H.-J., P. Neef, B. Hinz, H. Seidel, and L. Claes. Intradiscal pressure together with anthropometric data—a data set for the validation of models. Clin. Biomech. 16(Suppl 1):S111–S126, 2001.

    Article  Google Scholar 

  44. Winter, D. A. Biomechanics and Motor Control of Human Movement. Hoboken, NJ: Wiley, 2009.

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the Independent Research Fund Denmark under Grant No. DFF-7026-00099 to Sebastian Skals.

Conflict of interest

Mark de Zee is co-founder of the company AnyBody Technology A/S that owns and sells the AnyBody Modeling System, which was used for the simulations. Mark de Zee is also a minority shareholder in the company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Skals.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1738 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsen, F.G., Svenningsen, F.P., Andersen, M.S. et al. Estimation of Spinal Loading During Manual Materials Handling Using Inertial Motion Capture. Ann Biomed Eng 48, 805–821 (2020). https://doi.org/10.1007/s10439-019-02409-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02409-8

Keywords

Navigation