Skip to main content
Log in

Elevated Microdamage Spatially Correlates with Stress in Metastatic Vertebrae

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Metastasis of cancer to the spine impacts bone quality. This study aims to characterize vertebral microdamage secondary to metastatic disease considering the pattern of damage and its relationship to stress and strain under load. Osteolytic and mixed osteolytic/osteoblastic vertebral metastases were produced in athymic rats via HeLa cervical or canine Ace-1 prostate cancer cell inoculation, respectively. After 21 days, excised motion segments (T12–L2) were µCT scanned, stained with BaSO4 and re-imaged. T13–L2 motion segments were loaded in axial compression to induce microdamage, re-stained and re-imaged. L1 (loaded) and T12 (unloaded) vertebrae were fixed, sample blocks cut, polished and BSE imaged. µFE models were generated of all L1 vertebrae with displacement boundary conditions applied based on the loaded µCT images. µCT stereological analysis, BSE analysis and µFE derived von Mises stress and principal strains were quantitatively compared (ANOVA), spatial correlations determined and patterns of microdamage assessed qualitatively. BaSO4 identified microdamage was found to be spatially correlated with regions of high stress in µFEA. Load-induced microdamage was shown to be elevated in the presence of osteolytic and mixed metastatic disease, with diffuse, crossed hatched areas of microdamage present in addition to linear microdamage and microfractures in metastatic tissue, suggesting diminished bone quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

µCT:

Micro computed tomography

T12, L1:

12th thoracic and 1st lumbar vertebrae

N:

Newtons

SREs:

Skeletal related events

BaSO4 :

Barium sulfate

BSE imaging:

Backscatter electron imaging

µFE(A):

Micro finite element (analysis)

ANOVA:

Analysis of variance

RPMI:

Roswell Park Memorial Institute (RPMI) 1640 Medium

DMEM/F-12:

Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12

CO2 :

Carbon dioxide

TBV:

Trabecular bone volume

TMD:

Tissue mineral density

BMD:

Bone mineral density

TbN:

Trabecular number

TbS:

Trabecular spacing

TbTh:

Trabecular thickness

FHWM:

Full width half maximum

GLMax:

Grey level at the max intensity

GLAve:

Average grey level

GPa, MPa:

GigaPascal, MegaPascal

\(\varvec{\varepsilon}_{1}\) and \(\varvec{\varepsilon}_{3}\) :

Maximum and minimum principal strain

\(\varvec{\sigma}_{1}\) and \(\varvec{\sigma}_{3}\) :

Maximum and minimum principal stress

\(\varvec{\sigma}_{vm}\) :

Von Mises stress

SD:

Standard deviation

g(r):

Spatial correlation

References

  1. Bentolila, V., T. M. Boyce, D. P. Fyhrie, R. Drumb, T. M. Skerry, and M. B. Schaffler. Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23:275–281, 1998.

    Article  CAS  Google Scholar 

  2. Bloebaum, R. D., J. G. Skedros, E. G. Vajda, K. N. Bachus, and B. R. Constantz. Determining mineral content variations in bone using backscattered electron imaging. Bone 20:485–490, 1997.

    Article  CAS  PubMed  Google Scholar 

  3. Body, J.-J., P. Greipp, R. E. Coleman, T. Facon, F. Geurs, J.-P. Fermand, J.-L. Harousseau, A. Lipton, X. Mariette, C. D. Williams, A. Nakanishi, D. Holloway, S. W. Martin, C. R. Dunstan, and P. J. Bekker. A Phase I study of AMGN-0007, a recombinant osteoproteger in construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 97:887–892, 2003.

    Article  PubMed  Google Scholar 

  4. Burke, M. V., A. Atkins, M. Akens, T. L. Willett, and C. M. Whyne. Osteolytic and mixed cancer metastasis modulates collagen and mineral parameters within rat vertebral bone matrix. J. Orthop. Res. 34:2126–2136, 2016.

    Article  CAS  PubMed  Google Scholar 

  5. Burke, M., A. Atkins, A. Kiss, M. Akens, A. Yee, and C. Whyne. The impact of metastasis on the mineral phase of vertebral bone tissue. J. Mech. Behav. Biomed. Mater. 69:75–84, 2017.

    Article  CAS  PubMed  Google Scholar 

  6. Burke, M., A. Golaraei, A. Atkins, M. Akens, V. Barzda, and C. Whyne. Collagen fibril organization within rat vertebral bone modified with metastatic involvement. J. Struct. Biol. 199:153–164, 2017.

    Article  CAS  PubMed  Google Scholar 

  7. Burr, D. B. The importance of subchondral bone in osteoarthrosis. Curr. Opin. Rheumatol. 10:256–262, 1998.

    Article  CAS  PubMed  Google Scholar 

  8. Burr, D. B., and T. Stafford. Validity of the bulk-staining technique to separate artifactual from in vivo bone microdamage. Clin. Orthop. Relat. Res. 260:305–308, 1990. http://www.ncbi.nlm.nih.gov/pubmed/1699696.

  9. Burr, D. B., and R. B. Martin. Errors in bone remodeling: toward a unified theory of metabolic bone disease. Am. J. Anat. 186:186–216, 1989.

    Article  CAS  PubMed  Google Scholar 

  10. Burr, D. B., R. B. Martin, M. B. Schaffler, and E. L. Radin. Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 18:189–200, 1985.

    Article  CAS  PubMed  Google Scholar 

  11. Chamay, A., and P. Tschantz. Mechanical influences in bone remodeling. Experimental research on Wolff’s law. J. Biomech. 5:173–180, 1972.

    Article  CAS  PubMed  Google Scholar 

  12. Choudhari, C., K. Chan, M. K. Akens, and C. M. Whyne. μFE models can represent microdamaged regions of healthy and metastatically involved whole vertebrae identified through histology and contrast enhanced μCT imaging. J. Biomech. 49:1103–1110, 2016.

    Article  PubMed  Google Scholar 

  13. Choudhari, C., R. Herblum, M. K. Akens, S. Moore, M. Hardisty, and C. M. Whyne. Post-euthanasia micro-computed tomography-based strain analysis is able to represent quasi-static in vivo behavior of whole vertebrae. Proc. Inst. Mech. Eng. Part H 230:900–904, 2016.

    Article  Google Scholar 

  14. Daims, H., and M. Wagner. In situ techniques and digital image analysis methods for quantifying spatial localization patterns of nitrifiers and other microorganisms in biofilm and flocs. Elsevier 496:185–215, 2011.

    Google Scholar 

  15. Engebraaten, O., and O. Fodstad. Site-specific experimental metastasis patterns of two human breast cancer cell lines in nude rats. Int. J. Cancer 82:219–225, 1999.

    Article  CAS  PubMed  Google Scholar 

  16. Frost, H. M. Presence of microscopic cracks in vivo in bone. Henry Ford Hosp. Med. Bull. 8:25–35, 1960.

    Google Scholar 

  17. Frost, H. M. Suggested fundamental concepts in skeletal physiology. Calcif. Tissue Int. 52:1–4, 1993.

    Article  CAS  PubMed  Google Scholar 

  18. Frost, H. M. Bone modeling and skeletal modeling errors. Thomas, 1973, 214pp. https://catalogue.nla.gov.au/Record/451462.

  19. Goff, M. G., K. L. Chang, E. N. Litts, and C. J. Hernandez. The effects of misalignment during in vivo loading of bone: Techniques to detect the proximity of objects in three-dimensional models. J. Biomech. 47:3156–3161, 2014.

    Article  CAS  PubMed  Google Scholar 

  20. Hardisty, M. R., M. Akens, A. J. Yee, and C. M. Whyne. Image registration demonstrates the growth plate has a variable affect on vertebral strain. Ann. Biomed. Eng. 38:2948–2955, 2010.

    Article  CAS  PubMed  Google Scholar 

  21. Heaney, R. P. The bone-remodeling transient: Implications for the interpretation of clinical studies of bone mass change. J. Bone Miner. Res. 9:1515–1523, 1994.

    Article  CAS  PubMed  Google Scholar 

  22. Herblum, R., M. Beek, and C. M. Whyne. μfEA successfully exhibits higher stresses and strains in microdamaged regions of whole vertebrae. J. Orthop. Res. 31:1653–1660, 2013.

    Article  PubMed  Google Scholar 

  23. Hojjat, S.-P., W. Foltz, L. Wise-Milestone, and C. M. Whyne. Multimodal μCT/μMR based semiautomated segmentation of rat vertebrae affected by mixed osteolytic/osteoblastic metastases. Med. Phys. 39:2848, 2012.

    Article  PubMed  Google Scholar 

  24. Hojjat, S.-P., M. Hardisty, and C. M. Whyne. Micro-computed tomography-based highly automated 3D segmentation of the rat spine for quantitative analysis of metastatic disease. J. Neurosurg. Spine 13:367–370, 2010.

    Article  PubMed  Google Scholar 

  25. Hojjat, S.-P., E. Won, M. R. Hardisty, M. K. Akens, L. M. Wise-Milestone, and C. M. Whyne. Non-destructive evaluation of the effects of combined bisphosphonate and photodynamic therapy on bone strain in metastatic vertebrae using image registration. Ann. Biomed. Eng. 39:2816–2822, 2011.

    Article  PubMed  Google Scholar 

  26. Iwata, K., T. Mashiba, T. Hitora, Y. Yamagami, and T. Yamamoto. A large amount of microdamages in the cortical bone around fracture site in a patient of atypical femoral fracture after long-term bisphosphonate therapy. Bone 64:183–186, 2014.

    Article  Google Scholar 

  27. Kaneko, T. S., J. S. Bell, M. R. Pejcic, J. Tehranzadeh, and J. H. Keyak. Mechanical properties, density and quantitative CT scan data of trabecular bone with and without metastases. J. Biomech. 37:523–530, 2004.

    Article  PubMed  Google Scholar 

  28. Keaveny, T. M., X. E. Guo, E. F. Wachtel, T. A. McMahon, and W. C. Hayes. Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J. Biomech. 27:1127–1136, 1994.

    Article  CAS  PubMed  Google Scholar 

  29. Kinney, J. H., D. L. Haupt, M. Balooch, A. J. C. Ladd, J. T. Ryaby, and N. E. Lane. Three-dimensional morphometry of the L6 vertebra in the ovariectomized rat model of osteoporosis: biomechanical implications. J. Bone Miner. Res. 15:1981–1991, 2000.

    Article  CAS  PubMed  Google Scholar 

  30. Ladd, A. J., and J. H. Kinney. Numerical errors and uncertainties in finite-element modeling of trabecular bone. J. Biomech. 31:941–945, 1998.

    Article  CAS  PubMed  Google Scholar 

  31. Landrigan, M. D., J. Li, T. L. Turnbull, D. B. Burr, G. L. Niebur, and R. K. Roeder. Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone. Bone 48:443–450, 2011.

    Article  PubMed  Google Scholar 

  32. Lau, M., K. Lau, Y. Y. Yeo, C. A. Yeung, and J. Lee. Measurement of bovine bone properties through surface indentation technique. Mater. Manuf. Process. 25:324–328, 2010.

    Article  CAS  Google Scholar 

  33. Launey, M. E., M. J. Buehler, and R. O. Ritchie. On the mechanistic origins of toughness in bone. Annual. Rev. Mater. Res. 40:25–53, 2010.

    Article  CAS  Google Scholar 

  34. Lee, T. C., A. Staines, and D. Taylor. Bone adaptation to load: microdamage as a stimulus for bone remodelling. J. Anat. 201:437–446, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leng, H., X. Wang, R. D. Ross, G. L. Niebur, and R. K. Roeder. Micro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent. J. Mech. Behav. Biomed. Mater. 1:68–75, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lipton, A., R. L. Theriault, G. N. Hortobagyi, J. Simeone, R. D. Knight, K. Mellars, D. J. Reitsma, M. Heffernan, and J. J. Seaman. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases. Cancer 88:1082–1090, 2000.

    Article  CAS  Google Scholar 

  37. Lo, V. C. K., M. K. Akens, L. Wise-Milestone, A. J. M. Yee, B. C. Wilson, and C. M. Whyne. The benefits of photodynamic therapy on vertebral bone are maintained and enhanced by combination treatment with bisphosphonates and radiation therapy. J. Orthop. Res. 31:1398–1405, 2013.

    Article  CAS  PubMed  Google Scholar 

  38. Makiyama, A. M., S. Vajjhala, and L. J. Gibson. Analysis of crack growth in a 3D voronoi structure: a model for fatigue in low density trabecular bone. J. Biomech. Eng. 124:512, 2002.

    Article  CAS  PubMed  Google Scholar 

  39. Manolagas, S. C., and A. M. Parfitt. What old means to bone. Trends Endocrinol. Metab. 21:369–374, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martin, R. Toward a unifying theory of bone remodeling. Bone 26:1–6, 2000.

    Article  CAS  PubMed  Google Scholar 

  41. Mori, S., and D. B. Burr. Increased intracortical remodeling following fatigue damage. Bone 14:103–109, 1993.

    Article  CAS  Google Scholar 

  42. Morris, J. M. Fatigue fractures. Calif. Med. 108:268–274, 1968.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nagaraja, S., T. L. Couse, and R. E. Guldberg. Trabecular bone microdamage and microstructural stresses under uniaxial compression. J. Biomech. 38:707–716, 2005.

    Article  PubMed  Google Scholar 

  44. Nagaraja, S., A. S. P. Lin, and R. E. Guldberg. Age-related changes in trabecular bone microdamage initiation. Bone 40:973–980, 2007.

    Article  PubMed  Google Scholar 

  45. Nazarian, A., B. D. Snyder, D. Zurakowski, and R. Müller. Quantitative micro-computed tomography: a non-invasive method to assess equivalent bone mineral density. Bone 43:302–311, 2008.

    Article  PubMed  Google Scholar 

  46. Niebur, G. L., J. C. Yuen, A. C. Hsia, and T. M. Keaveny. Convergence behavior of high-resolution finite element models of trabecular bone. J. Biomech. Eng. 121:629, 1999.

    Article  CAS  PubMed  Google Scholar 

  47. Norman, T. L., and Z. Wang. Microdamage of human cortical bone: Incidence and morphology in long bones. Bone 20:375–379, 1997.

    Article  CAS  Google Scholar 

  48. Roschger, P., P. Fratzl, J. Eschberger, and K. Klaushofer. Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326, 1998.

    Article  CAS  PubMed  Google Scholar 

  49. Roschger, P., H. Plenk, K. Klaushofer, and J. Eschberger. A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities. Scanning Microsc. 9:75–86, 1995; (discussion 86–88).

    CAS  PubMed  Google Scholar 

  50. Saito, M., K. Fujii, and K. Marumo. Degree of mineralization-related collagen crosslinking in the femoral neck cancellous bone in cases of hip fracture and controls. Calcif. Tissue Int. 79:160–168, 2006.

    Article  CAS  PubMed  Google Scholar 

  51. Schaffler, M. B., K. Choi, and C. Milgrom. Aging and matrix microdamage accumulation in human compact bone. Bone 17:521–525, 1995.

    Article  CAS  PubMed  Google Scholar 

  52. Schaffner, G., X.-D. E. Guo, M. J. Silva, and L. J. Gibson. Modelling fatigue damage accumulation in two-dimensional Voronoi honeycombs. Int. J. Mech. Sci. 42:645–656, 2000.

    Article  Google Scholar 

  53. Toma, S., A. Venturino, G. Sogno, C. Formica, B. Bignotti, S. Bonassi, and R. Palumbo. Metastatic bone tumors: Nonsurgical treatment. Outcome and survival. Clin. Orthop. Relat. Res. 295:246–251, 1993. https://europepmc.org/abstract/med/8403656.

  54. Turnbull, T. L., A. P. Baumann, and R. K. Roeder. Fatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization. J. Biomech. 47:3135–3142, 2014.

    Article  PubMed  Google Scholar 

  55. Vashishth, D., J. Koontz, S. J. Qiu, D. Lundin-Cannon, Y. N. Yeni, M. B. Schaffler, and D. P. Fyhrie. In vivo diffuse damage in human vertebral trabecular bone. Bone 26:147–152, 2000.

    Article  CAS  PubMed  Google Scholar 

  56. Verborgt, O., G. J. Gibson, and M. B. Schaffler. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J. Bone Miner. Res. 15:60–67, 2000.

    Article  CAS  PubMed  Google Scholar 

  57. von Moos, R., J.-J. Body, B. Egerdie, A. Stopeck, J. E. Brown, D. Damyanov, L. J. Fallowfield, G. Marx, C. S. Cleeland, D. L. Patrick, F. G. Palazzo, Y. Qian, A. Braun, and K. Chung. Pain and health-related quality of life in patients with advanced solid tumours and bone metastases: integrated results from three randomized, double-blind studies of denosumab and zoledronic acid. Support. Care Cancer 21:3497–3507, 2013.

    Article  Google Scholar 

  58. Wang, X., D. B. Masse, H. Leng, K. P. Hess, R. D. Ross, R. K. Roeder, and G. L. Niebur. Detection of trabecular bone microdamage by micro-computed tomography. J. Biomech. 40:3397–3403, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wenzel, T. E., M. B. Schaffler, and D. P. Fyhrie. In vivo trabecular microcracks in human vertebral bone. Bone 19:89–95, 1996.

    Article  CAS  PubMed  Google Scholar 

  60. Whyne, C. M., S. S. Hu, and J. C. Lotz. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model. Spine (Phila. Pa. 1976) 28:652–660, 2003.

    Google Scholar 

  61. Wise-Milestone, L., M. K. Akens, T. J. Rosol, S.-P. Hojjat, M. D. Grynpas, and C. M. Whyne. Evaluating the effects of mixed osteolytic/osteoblastic metastasis on vertebral bone quality in a new rat model. J. Orthop. Res. 30:817–823, 2012.

    Article  PubMed  Google Scholar 

  62. Won, E., L. Wise-Milestone, M. K. Akens, S. Burch, A. J. M. Yee, B. C. Wilson, and C. M. Whyne. Beyond bisphosphonates: photodynamic therapy structurally augments metastatically involved vertebrae and destroys tumor tissue. Breast Cancer Res. Treat. 124:111–119, 2010. http://www.springerlink.com/index/5291524844350527.pdf.

  63. Wong, D. A., V. L. Fornasier, and I. MacNab. Spinal metastases: the obvious, the occult, and the impostors. Spine (Phila. Pa. 1976) 15:1–4, 1990.

    Article  CAS  Google Scholar 

  64. Yeh, O. C., and T. M. Keaveny. Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone. J. Orthop. Res. 19:1001–1007, 2001.

    Article  CAS  PubMed  Google Scholar 

  65. Zimmermann, E. A., B. Busse, and R. O. Ritchie. The fracture mechanics of human bone: influence of disease and treatment. Bonekey Rep. 4:743, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zioupos, P. Ageing human bone: factors affecting its biomechanical properties and the role of collagen. J. Biomater. Appl. 15:187–229, 2001.

    Article  CAS  PubMed  Google Scholar 

  67. Zysset, P. K., X. E. Guo, C. E. Hoffler, K. E. Moore, and S. A. Goldstein. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 32:1005–1012, 1999.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cari M. Whyne.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkins, A., Burke, M., Samiezadeh, S. et al. Elevated Microdamage Spatially Correlates with Stress in Metastatic Vertebrae. Ann Biomed Eng 47, 980–989 (2019). https://doi.org/10.1007/s10439-018-02188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02188-8

Keywords

Navigation