Skip to main content

Advertisement

Log in

Evaluation of Poly (Carbonate-Urethane) Urea (PCUU) Scaffolds for Urinary Bladder Tissue Engineering

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Although the previous success of bladder tissue engineering demonstrated the feasibility of this technology, most polyester based scaffolds used in previous studies possess inadequate mechanical properties for organs that exhibit large deformation. The present study explored the use of various biodegradable elastomers as scaffolds for bladder tissue engineering and poly (carbonate-urethane) urea (PCUU) scaffolds mimicked urinary bladder mechanics more closely than polyglycerol sebacate–polycaprolactone (PGS-PCL) and poly (ether-urethane) urea (PEUU). The PCUU scaffolds also showed cyto-compatibility as well as increased porosity with increasing stretch indicating its ability to aid in infiltration of smooth muscle cells. Moreover, a bladder outlet obstruction (BOO) rat model was used to test the safety and efficacy of the PCUU scaffolds in treating a voiding dysfunction. Bladder augmentation with PCUU scaffolds led to enhanced survival of the rats and an increase in the bladder capacity and voiding volume over a 3 week period, indicating that the high-pressure bladder symptom common to BOO was alleviated. The histological analysis of the explanted scaffold demonstrated smooth muscle cell and connective tissue infiltration. The knowledge gained in the present study should contribute towards future improvement of bladder tissue engineering technology to ultimately aide in the treatment of bladder disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Adelöw, C. A. M., and P. Frey. Synthetic hydrogel matrices for guided bladder tissue regeneration. Methods Mol. Med. 140:125–140, 2007.

    Article  PubMed  Google Scholar 

  2. Amoroso, N. J., A. D’Amore, Y. Hong, C. P. Rivera, M. S. Sacks, and W. R. Wagner. Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering. Acta Biomater. 8(12):4268–4277, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Atala, A., S. B. Bauer, S. Soker, J. J. Yoo, and A. B. Retik. Tissue-engineered autologous bladders for patients needing cystoplasty. The Lancet 367(9518):1241–1246, 2006.

    Article  Google Scholar 

  4. Courtney, T., M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27(19):3631–3638, 2006.

    CAS  PubMed  Google Scholar 

  5. Dahms, S. E., H. J. Piechota, R. Dahiya, T. F. Lue, and E. A. Tanagho. Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. Br. J. Urol. 82(3):411–419, 1998.

    Article  CAS  PubMed  Google Scholar 

  6. Eberli, D., L. F. Filho, A. Atala, and J. J. Yoo. Composite scaffolds for the engineering of hollow organs and tissues. Methods 47(2):109–115, 2009.

    Article  CAS  PubMed  Google Scholar 

  7. Fujimoto, K. L., K. Tobita, W. D. Merryman, J. Guan, N. Momoi, D. B. Stolz, et al. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J. Am. Coll. Cardiol. 49(23):2292–2300, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gloeckner, D. C., M. S. Sacks, M. O. Fraser, G. T. Somogyi, W. C. de Groat, and M. B. Chancellor. Passive biaxial mechanical properties of the rat bladder wall after spinal cord injury. J. Urol. 167(5):2247–2252, 2002.

    Article  PubMed  Google Scholar 

  9. Hong, Y., J. Guan, K. L. Fujimoto, R. Hashizume, A. L. Pelinescu, and W. R. Wagner. Tailoring the degradation kinetics of poly (ester carbonate urethane) urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 31(15):4249–4258, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hughes, F. M., H. M. Hill, C. M. Wood, A. T. Edmondson, A. Dumas, W. C. Foo, J. M. Oelsen, G. Rac, and J. T. Purves. The NLRP3 inflammasome mediates inflammation produced by bladder outlet obstruction. J. Urol. 195:1598–1605, 2016.

    Article  CAS  PubMed  Google Scholar 

  11. Jack, G. S., R. Zhang, M. Lee, Y. Xu, B. M. Wu, and L. V. Rodriguez. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials 30(19):3259–3270, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Joseph, D. B., J. G. Borer, R. E. De Filippo, S. J. Hodges, and G. A. McLorie. Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: phase II study in children and adolescents with spina bifida. J. Urol. 191(5):1389–1395, 2014.

    Article  CAS  PubMed  Google Scholar 

  13. Khurana, I. Excretory system. In: Essentials of Medical Physiology, edited by R. Pathak, and S. Nasim. Noida: Elsevier, 2008, pp. 339–340.

    Google Scholar 

  14. Kim, J. H., H. J. Lee, and Y. S. Song. Treatment of bladder dysfunction using stem cell or tissue engineering technique. Korean J. Urol. 55(4):228–238, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Korossis, S., F. Bolland, E. Ingham, J. Fisher, J. Kearney, and J. Southgate. Tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction. Tissue Eng. 12(4):635–644, 2006.

    Article  PubMed  Google Scholar 

  16. Lei, Y., A. Grover, A. Sinha, and N. Vyavahare. Efficacy of reversal of aortic calcification by chelating agents. Calcif. Tissue Int. 93(5):426–435, 2013.

    Article  CAS  PubMed  Google Scholar 

  17. Maddena, L. R., D. J. Mortisen, E. M. Sussmana, S. K. Duprasc, J. A. Fugatec, J. L. Cuya, K. D. Haucha, M. A. Laflammea, C. E. Murry, and B. D. Ratner. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. PNAS 107(34):15211–15216, 2010.

    Article  Google Scholar 

  18. Mauney, J. R., G. M. Cannon, M. L. Lovett, E. M. Gong, D. D. Vizio, P. Gomez, III, D. L. Kaplan, R. M. Adama, and C. R. Estrada, Jr. Evaluation of gel spun silk-based biomaterials in a murine model of bladder augmentation. Biomaterials 32:808–818, 2011.

    Article  CAS  PubMed  Google Scholar 

  19. Nagatomi, J., D. C. Gloeckner, M. Chancellor, W. deGroat, and M. Sacks. Changes in the biaxial viscoelastic response of the urinary bladder following spinal cord injury. Ann. Biomed. Eng. 32(10):1409–1419, 2004.

    Article  PubMed  Google Scholar 

  20. Oberpenning, F., J. Meng, J. J. Yoo, and A. Atala. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat. Biotechnol. 17(2):149–155, 1999.

    Article  CAS  PubMed  Google Scholar 

  21. Piechota, H. J., C. A. Gleason, S. E. Dahms, R. Dahiya, L. S. Nunes, T. F. Lue, and E. A. Tanagho. Bladder acellular matrix graft: in vivo functional properties of the regenerated rat bladder. Urol. Res. 27:206–213, 1999.

    Article  CAS  PubMed  Google Scholar 

  22. Sacks, M. S. A method for planar biaxial mechanical testing that includes in-plane shear. ASME J. Biomech. Eng. 121(5):551–555, 1999.

    Article  CAS  Google Scholar 

  23. Sant, S., C. M. Hwang, S. Lee, and A. Khademhosseini. Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. J. Tissue Eng. Regen. Med. 5(4):283–291, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sant, S., D. Iyer, A. K. Gaharwar, A. Patel, and A. Khademhosseini. Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate–polycaprolactone scaffolds. Acta Biomater. 9(4):5963–5973, 2013.

    Article  CAS  PubMed  Google Scholar 

  25. Seth, A., Y. G. Chung, E. S. Gil, D. Tu, D. Franck, and D. Di Vizio. The performance of silk scaffolds in a rat model of augmentation cystoplasty. Biomaterials 34(20):4758–4765, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sivaraman, S., and J. Nagatomi. Polymer-based scaffolds for urinary bladder tissue engineering. In: Polymers for Vascular and Urogenital Applications, edited by S. W. Shalaby, K. J. Burg, and W. Shalaby. Florida: CRC Press, 2012, pp. 175–200.

    Chapter  Google Scholar 

  27. Sivaraman, S., R. Ostendorff, B. Fleishman, and J. Nagatomi. Tetronic®-based composite hydrogel scaffolds seeded with rat bladder smooth muscle cells for urinary bladder tissue engineering applications. J. Biomater. Sci. Polym. Ed. 26(3):196–210, 2015.

    Article  CAS  PubMed  Google Scholar 

  28. Sloff, M., V. Simaioforidis, R. de Vries, E. Oosterwijk, and W. Feitz. Tissue engineering of the bladder—reality or myth? A systematic review. J. Urol. 192(4):1035–1042, 2014.

    Article  PubMed  Google Scholar 

  29. Stankus, J. J., L. Soletti, K. Fujimoto, Y. Hong, D. A. Vorp, and W. R. Wagner. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials 28(17):2738–2746, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoo, J. J., J. Meng, F. Oberpenning, and A. Atala. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51(2):221–225, 1998.

    Article  CAS  PubMed  Google Scholar 

  31. Zderic, S. A., S. Chacko, M. E. Disanto, and A. J. Wein. Voiding function: relevant anatomy, physiology, pharmocology and molecular aspects. In: Adult and Pediatric Urology, edited by J. Y. Gillenwater, J. T. Grayhack, S. S. Howards, and M. E. Mitchell. Philadelphia: Lippincott Williams and Wilkins, 2007, pp. 1067–1068.

    Google Scholar 

  32. Zhang, Y., B. P. Kropp, H. K. Ling, R. Cowan, and E. Y. Cheng. Bladder regeneration with cell-seeded small intestinal submucosa. Tissue Eng. 10:181–187, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ali Khademhosseini and Dr. Shilpa Sant, Harvard University, for supplying us with the PGS-PCL scaffolds, Dr. Yi Hong, University of Pittsburgh, for supplying us with PEUU and PCUU scaffolds, Dr. Thuy Pham and Dr. Wei Sun, Georgia Institute of Technology for assistance with biaxial testing, Dr. George Wetzel, Clemson University for assistance with the Scanning electron microscope (SEM), and Mr. Chad McMahan, Clemson University, for assistance with histology. The funding for this research was provided by NIH 8P20GM103444.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanth Sivaraman.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaraman, S., Amoroso, N., Gu, X. et al. Evaluation of Poly (Carbonate-Urethane) Urea (PCUU) Scaffolds for Urinary Bladder Tissue Engineering. Ann Biomed Eng 47, 891–901 (2019). https://doi.org/10.1007/s10439-018-02182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02182-0

Keywords

Navigation