Skip to main content

Advertisement

Log in

Finite Element-Derived Surrogate Models of Locked Plate Fracture Fixation Biomechanics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Internal fixation of bone fractures using plates and screws involves many choices—implant type, material, sizes, and geometric configuration—made by the surgeon. These decisions can be important for providing adequate stability to promote healing and prevent implant mechanical failure. The purpose of this study was to develop mathematical models of the relationships between fracture fixation construct parameters and resulting 3D biomechanics, based on parametric computer simulations. Finite element models of hundreds of different locked plate fixation constructs for midshaft diaphyseal fractures were systematically assembled using custom algorithms, and axial, torsional, and bending loadings were simulated. Multivariate regression was used to fit response surface polynomial equations relating fixation design parameters to outputs including maximum implant stresses, axial and shear strain at the fracture site, and construct stiffness. Surrogate models with as little as three regressors showed good fitting (R 2 = 0.62–0.97). Inner working length was the strongest predictor of maximum plate and screw stresses, and a variety of quadratic and interaction terms influenced resulting biomechanics. The framework presented in this study can be applied to additional types of bone fractures to provide clinicians and implant designers with clinical insight, surgical optimization, and a comprehensive mathematical description of biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

L plate :

Length of plate

d gap :

Fracture gap size

N screws :

Number of screws

L inner :

Working length between inner screws

L outer :

Working length between outer screws

E implant :

Implant material elastic modulus

σ plate_max :

Max von Mises stress of plate

σ screw_max :

Max von Mises stress of screw

k axial :

Axial stiffness of the fracture fixation construct

k torsion :

Torsional stiffness of the fracture fixation construct

k bending :

Bending stiffness of the fracture fixation construct

ε axial :

Interfragmentary axial strain

ε shear :

Interfragmentary shear strain

References

  1. Augat, P., J. Burger, S. Schorlemmer, T. Henke, M. Peraus, and L. Claes. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J. Orthop. Res. 21:1011–1017, 2003.

    Article  PubMed  Google Scholar 

  2. Bah, M. T., J. Shi, M. O. Heller, Y. Suchier, F. Lefebvre, P. Young, L. King, D. G. Dunlop, M. Boettcher, E. Draper, and M. Browne. Inter-subject variability effects on the primary stability of a short cementless femoral stem. J. Biomech. 48:1032–1042, 2015.

    Article  PubMed  Google Scholar 

  3. Bonyun, M., A. Nauth, K. A. Egol, M. J. Gardner, P. J. Kregor, M. D. McKee, P. R. Wolinsky, and E. H. Schemitsch. Hot topics in biomechanically directed fracture fixation. J. Orthop. Trauma 28:S32–S35, 2014.

    Article  PubMed  Google Scholar 

  4. Bottlang, M., J. Doornink, D. C. Fitzpatrick, and S. M. Madey. Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J. Bone Jt. Surg. 91:1985–1994, 2009.

    Article  Google Scholar 

  5. Bottlang, M., J. Doornink, T. J. Lujan, D. C. Fitzpatrick, J. L. Marsh, P. Augat, B. von Rechenberg, M. Lesser, and S. M. Madey. Effects of construct stiffness on healing of fractures stabilized with locking plates. J. Bone Jt. Surg. 92:12–22, 2010.

    Article  Google Scholar 

  6. Casha, A. R., L. Camilleri, A. Manché, R. Gatt, D. Attard, M. Gauci, M.-T. Camilleri-Podesta, and J. N. Grima. External rib structure can be predicted using mathematical models: An anatomical study with application to understanding fractures and intercostal muscle function. Clin. Anat. 28:512–519, 2015.

    Article  PubMed  Google Scholar 

  7. Claes, L. Biomechanical principles and mechanobiologic aspects of flexible and locked plating. J. Orthop. Trauma 25:S4–S7, 2011.

    Article  PubMed  Google Scholar 

  8. Cowin, S. C., and S. B. Doty. Tissue mechanics. New York: Springer, p. 357, 2007.

    Book  Google Scholar 

  9. Duda, G. N., F. Mandruzzato, M. Heller, J.-P. Kassi, C. Khodadadyan, and N. P. Haas. Mechanical conditions in the internal stabilization of proximal tibial defects. Clin. Biomech. 17:64–72, 2002.

    Article  Google Scholar 

  10. Egol, K. A., C. E. Capriccioso, S. R. Konda, N. C. Tejwani, F. A. Liporace, J. D. Zuckerman, and R. I. Davidovitch. Cost-effective trauma implant selection. J. Bone Jt. Surg. 96:e189, 2014.

    Article  Google Scholar 

  11. Egol, K. A., E. N. Kubiak, E. Fulkerson, F. J. Kummer, and K. J. Koval. Biomechanics of locked plates and screws. J. Orthop. Trauma Sept. 2004(18):488–493, 2004.

    Article  Google Scholar 

  12. Elkins, J., J. L. Marsh, T. Lujan, R. Peindl, J. Kellam, D. D. Anderson, and W. Lack. Motion predicts clinical callus formation: construct-specific finite element analysis of supracondylar femoral fractures. J. Bone Joint Surg. Am. 98:276–284, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ellis, T., C. A. Bourgeault, and R. F. Kyle. Screw Position Affects Dynamic Compression Plate Strain in an In Vitro Fracture Model. J. Orthop. Trauma 15:333–337, 2001.

    Article  CAS  PubMed  Google Scholar 

  14. Fang, K.-T., R. Li, and A. Sudjianto. Design and modeling for computer experiments. New York: Chapman & Hall/CRC Press, pp. 20–24, 2006.

    Google Scholar 

  15. Gardner, M. J., J. M. Evans, and R. P. Dunbar. Failure of Fracture Plate Fixation. J. Am. Acad. Orthop. Surg. 17:647–657, 2009.

    Article  PubMed  Google Scholar 

  16. Klein, P., H. Schell, F. Streitparth, M. Heller, J.-P. Kassi, F. Kandziora, H. Bragulla, N. P. Haas, and G. N. Duda. The initial phase of fracture healing is specifically sensitive to mechanical conditions. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 21:662–669, 2003.

    Article  Google Scholar 

  17. MacLeod, A. R., A. H. R. W. Simpson, and P. Pankaj. Age-related optimisation of screw placement for reduced loosening risk in locked plating. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2016. doi:10.1002/jor.23193.

    Google Scholar 

  18. Märdian, S., K.-D. Schaser, G. N. Duda, and M. Heyland. Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading. Clin. Biomech. 30:391–396, 2015.

    Article  Google Scholar 

  19. Moazen, M., A. C. Jones, A. Leonidou, Z. Jin, R. K. Wilcox, and E. Tsiridis. Rigid versus flexible plate fixation for periprosthetic femoral fracture—Computer modelling of a clinical case. Med. Eng. Phys. 34:1041–1048, 2012.

    Article  PubMed  Google Scholar 

  20. Morgan, E. F., K. T. S. Palomares, R. E. Gleason, D. L. Bellin, K. B. Chien, G. U. Unnikrishnan, and P. L. Leong. Correlations between local strains and tissue phenotypes in an experimental model of skeletal healing. J. Biomech. 43:2418–2424, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nassiri, M., B. MacDonald, and J. M. O’Byrne. Computational modelling of long bone fractures fixed with locking plates – How can the risk of implant failure be reduced? J. Orthop. 10:29–37, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oh, J.-K., D. Sahu, Y.-H. Ahn, S.-J. Lee, S. Tsutsumi, J.-H. Hwang, D.-Y. Jung, S. M. Perren, and C.-W. Oh. Effect of fracture gap on stability of compression plate fixation: A finite element study. J. Orthop. Res. 28:462–467, 2010.

    PubMed  Google Scholar 

  23. Perren, S. M. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J. Bone Joint Surg. Br. 84:1093–1110, 2002.

    Article  PubMed  Google Scholar 

  24. Prendergast, P. J., R. Huiskes, and K. Søballe. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30:539–548, 1997.

    Article  CAS  PubMed  Google Scholar 

  25. Ruedi, T. P., W. M. Murphy, et al. AO principles of fracture management. New York: Thieme Medical Publishers, pp. 292–294, 2007.

    Google Scholar 

  26. SAS Institute. SAS/IML 9.3 User’s Guide. SAS Institute, 2011, pp. 6340–6475 at https://support.sas.com/documentation/cdl/en/imlug/64248/PDF/default/imlug.pdf

  27. Simpson, T. W., A. J. Booker, D. Ghosh, A. A. Giunta, P. N. Koch, and R.-J. Yang. Approximation methods in multidisciplinary analysis and optimization: a panel discussion. Struct. Multidiscip. Optim. 27:302–313, 2004.

    Article  Google Scholar 

  28. Smith, W. R., B. H. Ziran, J. O. Anglen, and P. F. Stahel. Locking plates: tips and tricks. J. Bone Jt. Surg. 89:2298–2307, 2007.

    Google Scholar 

  29. Stoffel, K., U. Dieter, G. Stachowiak, A. Gächter, and M. S. Kuster. Biomechanical testing of the LCP – how can stability in locked internal fixators be controlled? Injury 34(Supplement 2):11–19, 2003.

    Article  Google Scholar 

  30. Wagner, M. General principles for the clinical use of the LCP. Injury 34(Supplement 2):31–42, 2003.

    Article  Google Scholar 

Download references

Acknowledgments

This project is funded, in part, under a grant with the Pennsylvania Department of Health using Tobacco CURE Funds. Project no. S-15-196L was supported by AO Foundation, Switzerland. Additional support was received from the National Center for Advancing Translational Sciences, Grant KL2 TR000126. Fracture fixation plates and screws were donated by Depuy Synthes. Disclosure: H.W. and V.M.C. have no conflicts of interest to disclose. G.S.L. has received implants and CAD files for research as PI from Depuy-Synthes. J.S.R. is a speaker for product related instructional courses for Smith and Nephew, and is a consultant for Depuy-Synthes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Lewis.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1036 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wee, H., Reid, J.S., Chinchilli, V.M. et al. Finite Element-Derived Surrogate Models of Locked Plate Fracture Fixation Biomechanics. Ann Biomed Eng 45, 668–680 (2017). https://doi.org/10.1007/s10439-016-1714-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1714-3

Keywords

Navigation