Skip to main content

Advertisement

Log in

Imaging Spatiotemporal Activities of ZAP-70 in Live T Cells Using a FRET-Based Biosensor

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The zeta-chain-associated protein kinase 70 kDa (ZAP-70), a member of the spleen tyrosine kinase (Syk) family, plays an essential role in early T cell receptor (TCR) signaling. Defects in ZAP-70 lead to impaired thymocyte development and peripheral T cell activation. To better understand its activation dynamics and regulation, we visualized ZAP-70 activities in single live T cells with a Förster resonance energy transfer (FRET)‐based biosensor, which was designed for probing kinase activities of the Syk family. We observed in Jurkat E6.1 T cells rapid and specific FRET changes following anti-CD3 stimulation and subsequent piceatannol inhibition. The initiation of ZAP-70 activation was prompt (within 10 s) and correlates with the accompanied intracellular calcium elevation, as revealed by simultaneous imaging of the biosensor and calcium. Different from the previously reported ZAP-70 activation in the immunological synapse and the opposite pole (anti-synapse), we have observed rapid and sustained ZAP-70 activation only at the synapse with superantigen-pulsed Raji B cells. Furthermore, ZAP-70 signaling was impaired by cholesterol depletion, further supporting the importance of membrane organization in TCR signaling. Together our results provide a direct characterization of the spatiotemporal features of ZAP-70 activity in real time at subcellular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Acuto, O., V. Di Bartolo, and F. Michel. Tailoring T-cell receptor signals by proximal negative feedback mechanisms. Nat. Rev. Immunol. 8:699–712, 2008.

    Article  CAS  PubMed  Google Scholar 

  2. Au-Yeung, B. B., S. Deindl, L. Y. Hsu, E. H. Palacios, S. E. Levin, J. Kuriyan, and A. Weiss. The structure, regulation, and function of ZAP-70. Immunol. Rev. 228:41–57, 2009.

    Article  CAS  PubMed  Google Scholar 

  3. Au-Yeung, B. B., S. E. Levin, C. Zhang, L. Y. Hsu, D. A. Cheng, N. Killeen, K. M. Shokat, and A. Weiss. A genetically selective inhibitor demonstrates a function for the kinase Zap70 in regulatory T cells independent of its catalytic activity. Nat. Immunol. 11:1085–1092, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bi, K., Y. Tanaka, N. Coudronniere, K. Sugie, S. Hong, M. J. van Stipdonk, and A. Altman. Antigen-induced translocation of PKC-theta to membrane rafts is required for T cell activation. Nat. Immunol. 2:556–563, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Boerth, N. J., J. J. Sadler, D. E. Bauer, J. L. Clements, S. M. Gheith, and G. A. Koretzky. Recruitment of SLP-76 to the membrane and glycolipid-enriched membrane microdomains replaces the requirement for linker for activation of T cells in T cell receptor signaling. J. Exp. Med. 192:1047–1058, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brdicka, T., T. A. Kadlecek, J. P. Roose, A. W. Pastuszak, and A. Weiss. Intramolecular regulatory switch in ZAP-70: analogy with receptor tyrosine kinases. Mol. Cell. Biol. 25:4924–4933, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bunnell, S. C., D. I. Hong, J. R. Kardon, T. Yamazaki, C. J. McGlade, V. A. Barr, and L. E. Samelson. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158:1263–1275, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cadra, S., A. Gucciardi, M. P. Valignat, O. Theodoly, A. Vacaflores, J. C. Houtman, and A. C. Lellouch. ROZA-XL, an improved FRET based biosensor with an increased dynamic range for visualizing zeta associated protein 70 kD (ZAP-70) tyrosine kinase activity in live T cells. Biochem. Biophys. Res. Commun. 459:405–410, 2015.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, L., L. Huynh, J. Apgar, L. Tang, L. Rassenti, A. Weiss, and T. J. Kipps. ZAP-70 enhances IgM signaling independent of its kinase activity in chronic lymphocytic leukemia. Blood 111:2685–2692, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davis, S. J., and P. A. van der Merwe. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7:803–809, 2006.

    Article  CAS  PubMed  Google Scholar 

  11. Drevot, P., C. Langlet, X. J. Guo, A. M. Bernard, O. Colard, J. P. Chauvin, R. Lasserre, and H. T. He. TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21:1899–1908, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dustin, M. L. Multiscale analysis of T cell activation: correlating in vitro and in vivo analysis of the immunological synapse. Curr. Top. Microbiol. Immunol. 334:47–70, 2009.

    CAS  PubMed  Google Scholar 

  13. Dykstra, M., A. Cherukuri, H. W. Sohn, S. J. Tzeng, and S. K. Pierce. Location is everything: lipid rafts and immune cell signaling. Annu. Rev. Immunol. 21:457–481, 2003.

    Article  CAS  PubMed  Google Scholar 

  14. Edelstein, A., N. Amodaj, K. Hoover, R. Vale, and N. Stuurman. Computer control of microscopes using microManager. Curr. Protoc. Mol. Biol. Chapter 14: Unit14.20. doi:10.1002/0471142727.mb1420s92, 2010.

  15. Fargnoli, J., A. L. Burkhardt, M. Laverty, S. A. Kut, N. S. van Oers, A. Weiss, and J. B. Bolen. Syk mutation in Jurkat E6-derived clones results in lack of p72syk expression. J. Biol. Chem. 270:26533–26537, 1995.

    Article  CAS  PubMed  Google Scholar 

  16. Grakoui, A., S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin. The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227, 1999.

    Article  CAS  PubMed  Google Scholar 

  17. He, H. T., and D. Marguet. T-cell antigen receptor triggering and lipid rafts: a matter of space and time scales. Talking Point on the involvement of lipid rafts in T-cell activation. EMBO Rep. 9:525–530, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, J., L. J. Edwards, B. D. Evavold, and C. Zhu. Kinetics of MHC-CD8 interaction at the T cell membrane. J. Immunol. 179:7653–7662, 2007.

    Article  CAS  PubMed  Google Scholar 

  19. Huang, J., V. I. Zarnitsyna, B. Liu, L. J. Edwards, N. Jiang, B. D. Evavold, and C. Zhu. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464:932–936, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huse, M. The T-cell-receptor signaling network. J. Cell Sci. 122:1269–1273, 2009.

    Article  CAS  PubMed  Google Scholar 

  21. Huse, M., L. O. Klein, A. T. Girvin, J. M. Faraj, Q. J. Li, M. S. Kuhns, and M. M. Davis. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 27:76–88, 2007.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, N., J. Huang, L. J. Edwards, B. Liu, Y. Zhang, C. D. Beal, B. D. Evavold, and C. Zhu. Two-stage cooperative T cell receptor-peptide major histocompatibility complex–CD8 trimolecular interactions amplify antigen discrimination. Immunity 34:13–23, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, K. H., A. R. Dinner, C. Tu, G. Campi, S. Raychaudhuri, R. Varma, T. N. Sims, W. R. Burack, H. Wu, J. Wang, O. Kanagawa, M. Markiewicz, P. M. Allen, M. L. Dustin, A. K. Chakraborty, and A. S. Shaw. The immunological synapse balances T cell receptor signaling and degradation. Science 302:1218–1222, 2003.

    Article  CAS  PubMed  Google Scholar 

  24. Lillemeier, B. F., M. A. Mortelmaier, M. B. Forstner, J. B. Huppa, J. T. Groves, and M. M. Davis. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11:90–96, 2010.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, B., W. Chen, K. Natarajan, Z. Li, D. H. Margulies, and C. Zhu. The cellular environment regulates in situ kinetics of T-cell receptor interaction with peptide major histocompatibility complex. Eur. J. Immunol. 45:2099–2110, 2015.

    Article  CAS  PubMed  Google Scholar 

  26. Lu, S., M. Ouyang, J. Seong, J. Zhang, S. Chien, and Y. Wang. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging. PLoS Comput. Biol. 4:e1000127, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mocsai, A., J. Ruland, and V. L. Tybulewicz. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10:387–402, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peters, J. D., M. T. Furlong, D. J. Asai, M. L. Harrison, and R. L. Geahlen. Syk, activated by cross-linking the B-cell antigen receptor, localizes to the cytosol where it interacts with and phosphorylates alpha-tubulin on tyrosine. J. Biol. Chem. 271:4755–4762, 1996.

    Article  CAS  PubMed  Google Scholar 

  29. Randriamampita, C., P. Mouchacca, B. Malissen, D. Marguet, A. Trautmann, and A. C. Lellouch. A novel ZAP-70 dependent FRET based biosensor reveals kinase activity at both the immunological synapse and the antisynapse. PLoS ONE 3:e1521, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schade, A. E., and A. D. Levine. Lipid raft heterogeneity in human peripheral blood T lymphoblasts: a mechanism for regulating the initiation of TCR signal transduction. J. Immunol. 168:2233–2239, 2002.

    Article  CAS  PubMed  Google Scholar 

  31. Seong, J., M. Ouyang, T. Kim, J. Sun, P. C. Wen, S. Lu, Y. Zhuo, N. M. Llewellyn, D. D. Schlaepfer, J. L. Guan, S. Chien, and Y. Wang. Detection of focal adhesion kinase activation at membrane microdomains by fluorescence resonance energy transfer. Nat. Commun. 2:406, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sloan-Lancaster, J., J. Presley, J. Ellenberg, T. Yamazaki, J. Lippincott-Schwartz, and L. E. Samelson. ZAP-70 association with T cell receptor zeta (TCRzeta): fluorescence imaging of dynamic changes upon cellular stimulation. J. Cell Biol. 143:613–624, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sloan-Lancaster, J., W. Zhang, J. Presley, B. L. Williams, R. T. Abraham, J. Lippincott-Schwartz, and L. E. Samelson. Regulation of ZAP-70 intracellular localization: visualization with the green fluorescent protein. J. Exp. Med. 186:1713–1724, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ting, A. Y., K. H. Kain, R. L. Klemke, and R. Y. Tsien. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci U S A 98:15003–15008, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsien, R. Y., and A. T. Harootunian. Practical design criteria for a dynamic ratio imaging system. Cell Calcium 11:93–109, 1990.

    Article  CAS  PubMed  Google Scholar 

  36. Wacholtz, M. C., and P. E. Lipsky. Anti-CD3-stimulated Ca2+ signal in individual human peripheral T cells. Activation correlates with a sustained increase in intracellular Ca2+1. J. Immunol. 150:5338–5349, 1993.

    CAS  PubMed  Google Scholar 

  37. Wang, H., T. A. Kadlecek, B. B. Au-Yeung, H. E. Goodfellow, L. Y. Hsu, T. S. Freedman, and A. Weiss. ZAP-70: an essential kinase in T-cell signaling. Cold Spring Harb. Perspect. Biol. 2:a002279, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, Y., E. L. Botvinick, Y. Zhao, M. W. Berns, S. Usami, R. Y. Tsien, and S. Chien. Visualizing the mechanical activation of Src. Nature 434:1040–1045, 2005.

    Article  CAS  PubMed  Google Scholar 

  39. Weiss, A. T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell 73:209–212, 1993.

    Article  CAS  PubMed  Google Scholar 

  40. Xiang, X., J. Sun, J. Wu, H.-T. He, Y. Wang, and C. Zhu. A FRET-based biosensor for imaging SYK activities in living cells. Cell. Mol. Bioeng. 4:670–677, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yokosuka, T., K. Sakata-Sogawa, W. Kobayashi, M. Hiroshima, A. Hashimoto-Tane, M. Tokunaga, M. L. Dustin, and T. Saito. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6:1253–1262, 2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant R01AI044902 (to C.Z.), NIH HL098472, HL109142, HL121365 (Y.W.). We thank Dr. Arthur Weiss for kindly sharing the Jurkat P116 cell line expressing kinase-inactive ZAP-70.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhu.

Additional information

Associate Editor Sriram Neelamegham oversaw the review of this article.

Kaitao Li and Xue Xiang are the co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Xiang, X., Sun, J. et al. Imaging Spatiotemporal Activities of ZAP-70 in Live T Cells Using a FRET-Based Biosensor. Ann Biomed Eng 44, 3510–3521 (2016). https://doi.org/10.1007/s10439-016-1683-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1683-6

Keywords

Navigation