Skip to main content
Log in

Viscoelastic Response of the Human Lower Back to Passive Flexion: The Effects of Age

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Low back pain is a leading cause of disability in the elderly. The potential role of spinal instability in increasing risk of low back pain with aging was indirectly investigated via assessment of age-related differences in viscoelastic response of lower back to passive deformation. The passive deformation tests were conducted in upright standing posture to account for the effects of gravity load and corresponding internal tissues responses on the lower back viscoelastic response. Average bending stiffness, viscoelastic relaxation, and dissipated energy were quantified to characterize viscoelastic response of the lower back. Larger average bending stiffness, viscoelastic relaxation and dissipated energy were observed among older vs. younger participants. Furthermore, average bending stiffness of the lower back was found to be the highest around the neutral standing posture and to decrease with increasing the lower back flexion angle. Larger bending stiffness of the lower back at flexion angles where passive contribution of lower back tissues to its bending stiffness was minimal (i.e., around neutral standing posture) highlighted the important role of active vs. passive contribution of tissues to lower back bending stiffness and spinal stability. As a whole our results suggested that a diminishing contribution of passive and volitional active subsystems to spinal stability may not be a reason for higher severity of low back pain in older population. The role of other contributing elements to spinal stability (e.g., active reflexive) as well as equilibrium-based parameters (e.g., compression and shear forces under various activities) in increasing severity of low back pain with aging should be investigated in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Adams, M. A. Biomechanics of back pain. Acupunct. Med. 22(4):178–188, 2004.

    Article  PubMed  Google Scholar 

  2. Adams, M., and P. Dolan. A technique for quantifying the bending moment acting on the lumbar spine in vivo. J. Biomech. 24(2):117–126, 1991.

    Article  CAS  PubMed  Google Scholar 

  3. Adams, M., and P. Dolan. Time-dependent changes in the lumbar spine’s resistancc to bending. Clin. Biomech. 11(4):194–200, 1996.

    Article  Google Scholar 

  4. Adams, M. A., et al. The Biomechanics of Back Pain. London: Churchill Livingstone, 2007.

    Google Scholar 

  5. Bazrgari, B., et al. Disturbance and recovery of trunk mechanical and neuromuscular behaviours following prolonged trunk flexion: influences of duration and external load on creep-induced effects. Ergonomics 54(11):1043–1052, 2011.

    Article  PubMed  Google Scholar 

  6. Best, T. M., et al. Characterization of the passive responses of live skeletal muscle using the quasi-linear theory of viscoelasticity. J. Biomech. 27(4):413–419, 1994.

    Article  CAS  PubMed  Google Scholar 

  7. Biely, S., M. S. S. Smith, and S. P. Silfies. Clinical instability of the lumbar spine: diagnosis and intervention. Analysis. 6:7, 2006.

    Google Scholar 

  8. Biering-Sørensen, F. Low back trouble in a general population of 30-, 40-, 50-, and 60-year-old men and women. Study design, representativeness and basic results. Dan. Med. Bull. 29(6):289–299, 1982.

    PubMed  Google Scholar 

  9. Biering-Sørensen, F. A prospective study of low back pain in a general population. I. Occurrence, recurrence and aetiology. Scand. J. Rehabil. Med. 15(2):71–79, 1982.

    Google Scholar 

  10. Bressler, H. B., et al. The prevalence of low back pain in the elderly: a systematic review of the literature. Spine. 24(17):1813, 1999.

    Article  CAS  PubMed  Google Scholar 

  11. Buckwalter, J. A. Aging and degeneration of the human intervertebral disc. Spine. 20(11):1307–1314, 1995.

    Article  CAS  PubMed  Google Scholar 

  12. Cholewicki, J., M. M. Panjabi, and A. Khachatryan. Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture. Spine 22(19):2207–2212, 1997.

    Article  CAS  PubMed  Google Scholar 

  13. Chou, R., and L. H. Huffman. Medications for acute and chronic low back pain: a review of the evidence for an American Pain Society/American College of Physicians clinical practice guideline. Ann. Intern. Med. 147(7):505–514, 2007.

    Article  PubMed  Google Scholar 

  14. Dupuis, P. R., et al. Radiologic diagnosis of degenerative lumbar spinal instability. Spine. 10(3):262–276, 1985.

    Article  CAS  PubMed  Google Scholar 

  15. Ferrari, S., et al. A literature review of clinical tests for lumbar instability in low back pain: validity and applicability in clinical practice. Chiropr. Man. Ther. 23(1):14, 2015.

    Article  Google Scholar 

  16. Fortin, M., et al. Paraspinal muscle morphology and composition: a 15-yr longitudinal magnetic resonance imaging study. Med. Sci. Sports Exerc. 46(5):893–901, 2014.

    Article  CAS  PubMed  Google Scholar 

  17. Galbusera, F., et al. Ageing and degenerative changes of the intervertebral disc and their impact on spinal flexibility. Eur. Spine J. 23(3):324–332, 2014.

    Google Scholar 

  18. Gay, R. E., et al. Sagittal plane motion in the human lumbar spine: comparison of the in vitro quasistatic neutral zone and dynamic motion parameters. Clin. Biomech. 21(9):914–919, 2006.

    Article  Google Scholar 

  19. Goel, V., K. Iron, and J. Williams. Indicators of health determinants and health status. Patterns HealthC. Ont. ICES Pract. Atlas 2:5–26, 1996.

    Google Scholar 

  20. Hendershot, B. D., et al. Evidence for an exposure-response relationship between trunk flexion and impairments in trunk postural control. J. Biomech. 46(14):2554–2557, 2013.

    Article  PubMed  Google Scholar 

  21. Henry, S. M., et al. Decreased limits of stability in response to postural perturbations in subjects with low back pain. Clin. Biomech. 21(9):881–892, 2006.

    Article  Google Scholar 

  22. Horak, F. B., and L. M. Nashner. Central programming of postural movements: adaptation to altered support-surface configurations. J. Neurophysiol. 55(6):1369–1381, 1986.

    CAS  PubMed  Google Scholar 

  23. Horal, J. The clinical appearance of low back disorders in the city of Gothenburg, Sweden: comparisons of incapacitated probands with matched controls. Acta Orthop. 40(S118):1–109, 1969.

    Article  Google Scholar 

  24. Izzo, R., et al. Biomechanics of the spine. Part II: Spinal instability. Eur. J. Radiol. 82(1):127–138, 2013.

    Article  PubMed  Google Scholar 

  25. Koeller, W., et al. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression—influence of age and degeneration. J. Biomech. 19(10):807–816, 1986.

    Article  CAS  PubMed  Google Scholar 

  26. Lawrence, R. C., et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 41(5):778–799, 1998.

    Article  CAS  PubMed  Google Scholar 

  27. Lee, B. C., and S. M. McGill. Effect of long-term isometric training on core/torso stiffness. J. Strength Cond. Res. 29(6):1515–1526, 2015.

    Article  PubMed  Google Scholar 

  28. Leipholz, H. Stability Theory: An Introduction to the Stability of Dynamie Systems and Rigid Bodies. New York: Academie Press, 1970.

    Google Scholar 

  29. Little, J. S., and P. S. Khalsa. Human lumbar spine creep during cyclic and static flexion: creep rate, biomechanics, and facet joint capsule strain. Ann. Biomed. Eng. 33(3):391–401, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Manchikanti, L. Epidemiology of low back pain. Pain Physician. 3(2):167–192, 2000.

    CAS  PubMed  Google Scholar 

  31. McGill, S., J. Seguin, and G. Bennett. Passive stiffness of the lumber torso in flexion, extension, lateral bending, and axial roatation: effect of belt wearing and breath holding. Spine. 19(6):696–704, 1994.

    Article  CAS  PubMed  Google Scholar 

  32. Moorhouse, K. M., and K. P. Granata. Role of reflex dynamics in spinal stability: intrinsic muscle stiffness alone is insufficient for stability. J. Biomech. 40(5):1058–1065, 2007.

    Article  PubMed  Google Scholar 

  33. Nerlich, A. G., E. D. Schleicher, and N. Boos. Volvo Award winner in basic science studies: immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine. 22(24):2781–2795, 1997.

    Article  CAS  PubMed  Google Scholar 

  34. Panjabi, M. M. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J. Spinal Disord. Tech. 5(4):383–389, 1992.

    Article  CAS  Google Scholar 

  35. Panjabi, M. M. Clinical spinal instability and low back pain. J. Electromyogr. Kinesiol. 13(4):371–379, 2003.

    Article  PubMed  Google Scholar 

  36. Reeves, N. P., et al. The effects of trunk stiffness on postural control during unstable seated balance. Exp. Brain Res. 174(4):694–700, 2006.

    Article  PubMed  Google Scholar 

  37. Roughley, P. J. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 29(23):2691–2699, 2004.

    Article  PubMed  Google Scholar 

  38. Sanjeevi, R. A viscoelastic model for the mechanical properties of biological materials. J. Biomech. 15(2):107–109, 1982.

    Article  CAS  PubMed  Google Scholar 

  39. Shin, G., M. L. Nance, and G. A. Mirka. Differences in trunk kinematics and ground reaction forces between older and younger adults during lifting. Int. J. Ind. Ergon. 36(9):767–772, 2006.

    Article  Google Scholar 

  40. Shojaei, I., N. Arjmand, and B. Bazrgari. An optimization‐based method for prediction of lumbar spine segmental kinematics from the measurements of thorax and pelvic kinematics. Int. J. Numer. Methods Biomed. Eng. 2015. doi:10.1002/cnm.2729.

    Google Scholar 

  41. Shojaei, I., et al. Age related differences in mechanical demands imposed on the lower back by manual material handling tasks. J. Biomech. 2015. doi:10.1016/j.jbiomech.2015.10.037.

    Google Scholar 

  42. Solomonow, M. Ligaments: a source of musculoskeletal disorders. J Bodyw. Mov. Ther. 13(2):136–154, 2009.

    Article  PubMed  Google Scholar 

  43. Song, J., and X. Qu. Effects of age and its interaction with task parameters on lifting biomechanics. Ergonomics 57(5):653–668, 2014.

    Article  PubMed  Google Scholar 

  44. Toosizadeh, N., and M. A. Nussbaum. Creep deformation of the human trunk in response to prolonged and repetitive flexion: measuring and modeling the effect of external moment and flexion rate. Ann. Biomed. Eng. 41(6):1150–1161, 2013.

    Article  PubMed  Google Scholar 

  45. Toosizadeh, N., et al. Load-relaxation properties of the human trunk in response to prolonged flexion: measuring and modeling the effect of flexion angle. PloS One 7(11):e48625, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Toossi, M. Labor force projections to 2020: a more slowly growing workforce. Mon. Lab. Rev. 135:43, 2012.

    Google Scholar 

  47. Twomey, L., and J. Taylor. Sagittal movements of the human lumbar vertebral column: a quantitative study of the role of the posterior vertebral elements. Arch. Phys. Med. Rehabil. 64(7):322–325, 1983.

    CAS  PubMed  Google Scholar 

  48. Van Dieen, J. H., et al. Increased cocontraction of trunk muscles as a cause of impaired balance control. In: Proceedings of the International Society for the Study of the Lumbar Spine, Porto, Portugal, 2004.

  49. Vazirian, M., et al. Age-related differences in trunk intrinsic stiffness. J. Biomech. 2015. doi:10.1016/j.jbiomech.2015.09.010.

    Google Scholar 

  50. Vernon-Roberts, B., R. J. Moore, and R. D. Fraser. The natural history of age-related disc degeneration: the pathology and sequelae of tears. Spine 32(25):2797–2804, 2007.

    Article  PubMed  Google Scholar 

  51. Yahia, L., J. Audet, and G. Drouin. Rheological properties of the human lumbar spine ligaments. J. Biomed. Eng. 13(5):399–406, 1991.

    Article  CAS  PubMed  Google Scholar 

  52. Zirbel, S. A., et al. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load. Spine J. 13(9):1134–1147, 2013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by an award (R21OH010195) from the Centers for Disease Control and Prevention (CDC). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the CDC. The authors thank assistances of R. Tromp, E. Croft, and M. Vazirian in data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Bazrgari.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei, I., Allen-Bryant, K. & Bazrgari, B. Viscoelastic Response of the Human Lower Back to Passive Flexion: The Effects of Age. Ann Biomed Eng 44, 2817–2826 (2016). https://doi.org/10.1007/s10439-016-1569-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1569-7

Keywords

Navigation