Skip to main content
Log in

The Role of Synthetic Extracellular Matrices in Endothelial Progenitor Cell Homing for Treatment of Vascular Disease

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Poor vascular homeostasis drives many clinical disorders including diabetes, arthritis, atherosclerosis, and peripheral artery disease. Local tissue ischemia resultant of insufficient blood flow is a potent stimulus for recruitment of endothelial progenitor cells (EPCs). This mobilization and homing is a multi-step process involving EPC detachment from their steady state bone marrow niches, entry into circulation, rolling along vessel endothelium, transmigration, and adhesion to denuded extracellular matrix (ECM) where they may participate in neovessel formation. However, these events are often interrupted in pathological conditions partly due to an imbalance in factor presentation at the tissue level. EPC number and function is impaired in patients with vascular diseases and this dysfunction has been proposed as a prominent contributor to disease pathogenesis. Research approaches aimed at providing therapeutic angiogenesis commonly involve the delivery of proangiogenic cells and/or soluble factors. Nevertheless, greater understanding of the mechanisms involved in EPC homing in both healthy and diseased states is critical for improving efficacy of such strategies. This review underscores the matrix-related signals necessary for enhancing EPC recruitment to ischemic tissue and provides an overview of the development of synthetic ECMs that aim to mimic functions of the local native microenvironment for use in therapeutic angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Aicher, A., C. Heeschen, C. Mildner-Rihm, C. Urbich, C. Ihling, K. Technau-Ihling, A. M. Zeiher, and S. Dimmeler. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med. 9:1370–1376, 2003.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson, E. M., B. J. Kwee, S. A. Lewin, T. Raimondo, M. Mehta, and D. J. Mooney. Local delivery of vegf and sdf enhances endothelial progenitor cell recruitment and resultant recovery from ischemia. Tissue Eng. Part A 21:1217–1227, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Asahara, T., A. Kawamoto, and H. Masuda. Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells. 29:1650–1655, 2011.

    Article  CAS  PubMed  Google Scholar 

  4. Asahara, T., T. Murohara, A. Sullivan, M. Silver, R. van der Zee, T. Li, B. Witzenbichler, G. Schatteman, and J. M. Isner. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967, 1997.

    Article  CAS  PubMed  Google Scholar 

  5. Asahara, T., T. Takahashi, H. Masuda, C. Kalka, D. Chen, H. Iwaguro, Y. Inai, M. Silver, and J. M. Isner. Vegf contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 18:3964–3972, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Assmus, B., J. Honold, V. Schachinger, M. B. Britten, U. Fischer-Rasokat, R. Lehmann, C. Teupe, K. Pistorius, H. Martin, N. D. Abolmaali, T. Tonn, S. Dimmeler, and A. M. Zeiher. Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med. 355:1222–1232, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Avci-Adali, M., H. Stoll, N. Wilhelm, N. Perle, C. Schlensak, and H. P. Wendel. In vivo tissue engineering: mimicry of homing factors for self-endothelialization of blood-contacting materials. Pathobiology 80:176–181, 2013.

    Article  CAS  PubMed  Google Scholar 

  8. Avci-Adali, M., G. Ziemer, and H. P. Wendel. Induction of epc homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization—a review of current strategies. Biotechnol. Adv. 28:119–129, 2010.

    Article  CAS  PubMed  Google Scholar 

  9. Boontheekul, T., H. J. Kong, and D. J. Mooney. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26:2455–2465, 2005.

    Article  CAS  PubMed  Google Scholar 

  10. Brown, A. C., and T. H. Barker. Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater. 10:1502–1514, 2014.

    Article  CAS  PubMed  Google Scholar 

  11. Bui, Q. T., Z. M. Gertz, and R. L. Wilensky. Intracoronary delivery of bone-marrow-derived stem cells. Stem Cell Res. Ther. 1:29, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chavakis, E., A. Aicher, C. Heeschen, K. Sasaki, R. Kaiser, N. El Makhfi, C. Urbich, T. Peters, K. Scharffetter-Kochanek, A. M. Zeiher, T. Chavakis, and S. Dimmeler. Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J. Exp. Med. 201:63–72, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chavakis, E., C. Urbich, and S. Dimmeler. Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J. Mol. Cell. Cardiol. 45:514–522, 2008.

    Article  CAS  PubMed  Google Scholar 

  14. Chekanov, V., M. Akhtar, G. Tchekanov, G. Dangas, M. Z. Shehzad, F. Tio, M. Adamian, A. Colombo, G. Roubin, M. B. Leon, J. W. Moses, and N. N. Kipshidze. Transplantation of autologous endothelial cells induces angiogenesis. Pacing Clin. Electrophysiol. 26:496–499, 2003.

    Article  PubMed  Google Scholar 

  15. Chen, F. M., L. A. Wu, M. Zhang, R. Zhang, and H. H. Sun. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: promises, strategies, and translational perspectives. Biomaterials 32:3189–3209, 2011.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, R. R., E. A. Silva, W. W. Yuen, and D. J. Mooney. Spatio-temporal vegf and pdgf delivery patterns blood vessel formation and maturation. Pharm. Res. 24:258–264, 2007.

    Article  PubMed  Google Scholar 

  17. Chen, Y. H., S. J. Lin, F. Y. Lin, T. C. Wu, C. R. Tsao, P. H. Huang, P. L. Liu, Y. L. Chen, and J. W. Chen. High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes 56:1559–1568, 2007.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng, M., and G. Qin. Progenitor cell mobilization and recruitment: Sdf-1, cxcr4, alpha4-integrin, and c-kit. Prog. Mol. Biol. Transl. Sci. 111:243–264, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng, Q., K. Komvopoulos, and S. Li. Plasma-assisted heparin conjugation on electrospun poly(l-lactide) fibrous scaffolds. J. Biomed. Mater. Res. A 102:1408–1414, 2014.

    Article  CAS  PubMed  Google Scholar 

  20. Critser, P. J., S. T. Kreger, S. L. Voytik-Harbin, and M. C. Yoder. Collagen matrix physical properties modulate endothelial colony forming cell-derived vessels in vivo. Microvasc. Res. 80:23–30, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dimmeler, S., and A. M. Zeiher. Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis? J. Mol. Med. 82:671–677, 2004.

    Article  PubMed  Google Scholar 

  22. Estes, M. L., J. A. Mund, D. A. Ingram, and J. Case. Identification of endothelial cells and progenitor cell subsets in human peripheral blood. Curr. Protoc. Cytom. Chapter 9: Unit 9.33.1-11, 2010.

  23. Fadini, G. P., C. Agostini, and A. Avogaro. Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis 209:10–17, 2010.

    Article  CAS  PubMed  Google Scholar 

  24. Fischer, U. M., M. T. Harting, F. Jimenez, W. O. Monzon-Posadas, H. Xue, S. I. Savitz, G. A. Laine, and C. S. Cox, Jr. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 18:683–692, 2009.

    Article  CAS  PubMed  Google Scholar 

  25. Gallagher, K. A., Z. J. Liu, M. Xiao, H. Chen, L. J. Goldstein, D. G. Buerk, A. Nedeau, S. R. Thom, and O. C. Velazquez. Diabetic impairments in no-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and sdf-1 alpha. J. Clin. Invest. 117:1249–1259, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hao, X., E. A. Silva, A. Mansson-Broberg, K. H. Grinnemo, A. J. Siddiqui, G. Dellgren, E. Wardell, L. A. Brodin, D. J. Mooney, and C. Sylven. Angiogenic effects of sequential release of vegf-a165 and pdgf-bb with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 75:178–185, 2007.

    Article  CAS  PubMed  Google Scholar 

  27. Hong, K. U., Q. H. Li, Y. Guo, N. S. Patton, A. Moktar, A. Bhatnagar, and R. Bolli. A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Res. Cardiol. 108:346, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang, N. F., A. Lam, Q. Fang, R. E. Sievers, S. Li, and R. J. Lee. Bone marrow-derived mesenchymal stem cells in fibrin augment angiogenesis in the chronically infarcted myocardium. Regen. Med. 4:527–538, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ingram, D. A., N. M. Caplice, and M. C. Yoder. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 106:1525–1531, 2005.

    Article  CAS  PubMed  Google Scholar 

  30. Ingram, D. A., L. E. Mead, H. Tanaka, V. Meade, A. Fenoglio, K. Mortell, K. Pollok, M. J. Ferkowicz, D. Gilley, and M. C. Yoder. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760, 2004.

    Article  CAS  PubMed  Google Scholar 

  31. Iwami, Y., H. Masuda, and T. Asahara. Endothelial progenitor cells: past, state of the art, and future. J. Cell. Mol. Med. 8:488–497, 2004.

    Article  PubMed  Google Scholar 

  32. Jha, A. K., K. M. Tharp, J. Ye, J. L. Santiago-Ortiz, W. M. Jackson, A. Stahl, D. V. Schaffer, Y. Yeghiazarians, and K. E. Healy. Enhanced survival and engraftment of transplanted stem cells using growth factor sequestering hydrogels. Biomaterials 47:1–12, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kalka, C., H. Masuda, T. Takahashi, W. M. Kalka-Moll, M. Silver, M. Kearney, T. Li, J. M. Isner, and T. Asahara. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. USA 97:3422–3427, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaushal, S., G. E. Amiel, K. J. Guleserian, O. M. Shapira, T. Perry, F. W. Sutherland, E. Rabkin, A. M. Moran, F. J. Schoen, A. Atala, S. Soker, J. Bischoff, and J. E. Mayer, Jr. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat. Med. 7:1035–1040, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawamoto, A., and T. Asahara. Role of progenitor endothelial cells in cardiovascular disease and upcoming therapies. Catheter Cardiovasc. Interv. 70:477–484, 2007.

    Article  PubMed  Google Scholar 

  36. Koch, A. E., M. M. Halloran, C. J. Haskell, M. R. Shah, and P. J. Polverini. Angiogenesis mediated by soluble forms of e-selectin and vascular cell adhesion molecule-1. Nature 376:517–519, 1995.

    Article  CAS  PubMed  Google Scholar 

  37. Laird, D. J., U. H. von Andrian, and A. J. Wagers. Stem cell trafficking in tissue development, growth, and disease. Cell 132:612–630, 2008.

    Article  CAS  PubMed  Google Scholar 

  38. Lee, K., E. A. Silva, and D. J. Mooney. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J. R. Soc. Interface 8:153–170, 2011.

    Article  CAS  PubMed  Google Scholar 

  39. Lee, K. Y., and D. J. Mooney. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37:106–126, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, Q., Z. Wang, S. Zhang, W. Zheng, Q. Zhao, J. Zhang, L. Wang, S. Wang, and D. Kong. Functionalization of the surface of electrospun poly(epsilon-caprolactone) mats using zwitterionic poly(carboxybetaine methacrylate) and cell-specific peptide for endothelial progenitor cells capture. Mater. Sci. Eng. C 33:1646–1653, 2013.

    Article  CAS  Google Scholar 

  41. Lim, W. H., W. W. Seo, W. Choe, C. K. Kang, J. Park, H. J. Cho, S. Kyeong, J. Hur, H. M. Yang, H. J. Cho, Y. S. Lee, and H. S. Kim. Stent coated with antibody against vascular endothelial-cadherin captures endothelial progenitor cells, accelerates re-endothelialization, and reduces neointimal formation. Arterioscler. Thromb. Vasc. Biol. 31:2798–2805, 2011.

    Article  CAS  PubMed  Google Scholar 

  42. Lin, Y., D. J. Weisdorf, A. Solovey, and R. P. Hebbel. Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest. 105:71–77, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, J., A. Hsu, J. F. Lee, D. E. Cramer, and M. J. Lee. To stay or to leave: stem cells and progenitor cells navigating the s1p gradient. World J. Biol. Chem. 2:1–13, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu, Z. J., R. Tian, W. An, Y. Zhuge, Y. Li, H. Shao, B. Habib, A. S. Livingstone, and O. C. Velazquez. Identification of e-selectin as a novel target for the regulation of postnatal neovascularization: implications for diabetic wound healing. Ann. Surg. 252:625–634, 2010.

    PubMed  PubMed Central  Google Scholar 

  45. Liu, Z. J., and O. C. Velazquez. Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid. Redox Signal. 10:1869–1882, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Loomans, C. J., E. J. de Koning, F. J. Staal, M. B. Rookmaaker, C. Verseyden, H. C. de Boer, M. C. Verhaar, B. Braam, T. J. Rabelink, and A. J. van Zonneveld. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53:195–199, 2004.

    Article  CAS  PubMed  Google Scholar 

  47. Martin-Rendon, E., S. J. Brunskill, C. J. Hyde, S. J. Stanworth, A. Mathur, and S. M. Watt. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur. Heart J. 29:1807–1818, 2008.

    Article  CAS  PubMed  Google Scholar 

  48. Mendelson, K., T. Evans, and T. Hla. Sphingosine 1-phosphate signalling. Development 141:5–9, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moore, M. A., K. Hattori, B. Heissig, J. H. Shieh, S. Dias, R. G. Crystal, and S. Rafii. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of sdf-1, vegf, and angiopoietin-1. Ann. N. Y. Acad. Sci. 938:36–45, 2001; (discussion 45-37).

    Article  CAS  PubMed  Google Scholar 

  50. Mund, J. A., M. L. Estes, M. C. Yoder, D. A. Ingram, Jr, and J. Case. Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler. Thromb. Vasc. Biol. 32:1045–1053, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Napoli, C., T. Hayashi, F. Cacciatore, A. Casamassimi, C. Casini, M. Al-Omran, and L. J. Ignarro. Endothelial progenitor cells as therapeutic agents in the microcirculation: an update. Atherosclerosis 215:9–22, 2011.

    Article  CAS  PubMed  Google Scholar 

  52. Ogle, M. E., L. S. Sefcik, A. O. Awojoodu, N. F. Chiappa, K. Lynch, S. Peirce-Cottler, and E. A. Botchwey. Engineering in vivo gradients of sphingosine-1-phosphate receptor ligands for localized microvascular remodeling and inflammatory cell positioning. Acta Biomater. 10:4704–4714, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oh, I. Y., C. H. Yoon, J. Hur, J. H. Kim, T. Y. Kim, C. S. Lee, K. W. Park, I. H. Chae, B. H. Oh, Y. B. Park, and H. S. Kim. Involvement of e-selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle. Blood 110:3891–3899, 2007.

    Article  CAS  PubMed  Google Scholar 

  54. Peichev, M., A. J. Naiyer, D. Pereira, Z. Zhu, W. J. Lane, M. Williams, M. C. Oz, D. J. Hicklin, L. Witte, M. A. Moore, and S. Rafii. Expression of vegfr-2 and ac133 by circulating human cd34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958, 2000.

    CAS  PubMed  Google Scholar 

  55. Petrelli, A., A. Maestroni, G. P. Fadini, D. Belloni, M. Venturini, M. Albiero, S. Kleffel, B. G. Mfarrej, A. D. Maschio, P. Maffi, A. Avogaro, E. Ferrero, G. Zerbini, A. Secchi, and P. Fiorina. Improved function of circulating angiogenic cells is evident in type 1 diabetic islet-transplanted patients. Am. J. Transplant. 10:2690–2700, 2010.

    Article  CAS  PubMed  Google Scholar 

  56. Pislaru, S. V., A. Harbuzariu, R. Gulati, T. Witt, N. P. Sandhu, R. D. Simari, and G. S. Sandhu. Magnetically targeted endothelial cell localization in stented vessels. J. Am. Coll. Cardiol. 48:1839–1845, 2006.

    Article  CAS  PubMed  Google Scholar 

  57. Poldervaart, M. T., H. Gremmels, K. van Deventer, J. O. Fledderus, F. C. Oner, M. C. Verhaar, W. J. Dhert, and J. Alblas. Prolonged presence of vegf promotes vascularization in 3d bioprinted scaffolds with defined architecture. J. Control. Release 184:58–66, 2014.

    Article  CAS  PubMed  Google Scholar 

  58. Prokoph, S., E. Chavakis, K. R. Levental, A. Zieris, U. Freudenberg, S. Dimmeler, and C. Werner. Sustained delivery of sdf-1alpha from heparin-based hydrogels to attract circulating pro-angiogenic cells. Biomaterials 33:4792–4800, 2012.

    Article  CAS  PubMed  Google Scholar 

  59. Prokopi, M., G. Pula, U. Mayr, C. Devue, J. Gallagher, Q. Xiao, C. M. Boulanger, N. Westwood, C. Urbich, J. Willeit, M. Steiner, J. Breuss, Q. Xu, S. Kiechl, and M. Mayr. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood 114:723–732, 2009.

    Article  CAS  PubMed  Google Scholar 

  60. Qi, X., Y. Okamoto, T. Murakawa, F. Wang, O. Oyama, R. Ohkawa, K. Yoshioka, W. Du, N. Sugimoto, Y. Yatomi, N. Takuwa, and Y. Takuwa. Sustained delivery of sphingosine-1-phosphate using poly(lactic-co-glycolic acid)-based microparticles stimulates akt/erk-enos mediated angiogenesis and vascular maturation restoring blood flow in ischemic limbs of mice. Eur. J. Pharmacol. 634:121–131, 2010.

    Article  CAS  PubMed  Google Scholar 

  61. Raval, Z., and D. W. Losordo. Cell therapy of peripheral arterial disease: from experimental findings to clinical trials. Circ. Res. 112:1288–1302, 2013.

    Article  CAS  PubMed  Google Scholar 

  62. Renault, M. A., and D. W. Losordo. Therapeutic myocardial angiogenesis. Microvasc. Res. 74:159–171, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Richardson, M. R., and M. C. Yoder. Endothelial progenitor cells: Quo vadis? J. Mol. Cell Cardiol. 50:266–272, 2011.

    Article  CAS  PubMed  Google Scholar 

  64. Sanganalmath, S. K., and R. Bolli. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ. Res. 113:810–834, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schachinger, V., B. Assmus, M. B. Britten, J. Honold, R. Lehmann, C. Teupe, N. D. Abolmaali, T. J. Vogl, W. K. Hofmann, H. Martin, S. Dimmeler, and A. M. Zeiher. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the topcare-ami trial. J. Am. Coll. Cardiol. 44:1690–1699, 2004.

    Article  PubMed  Google Scholar 

  66. Schachinger, V., S. Erbs, A. Elsasser, W. Haberbosch, R. Hambrecht, H. Holschermann, J. Yu, R. Corti, D. G. Mathey, C. W. Hamm, T. Suselbeck, B. Assmus, T. Tonn, S. Dimmeler, A. M. Zeiher, and R.-A. Investigators. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med. 355:1210–1221, 2006.

    Article  CAS  PubMed  Google Scholar 

  67. Schultz, G. S., and A. Wysocki. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 17:153–162, 2009.

    Article  PubMed  Google Scholar 

  68. Sefcik, L. S., C. E. Petrie Aronin, K. A. Wieghaus, and E. A. Botchwey. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering. Biomaterials 29:2869–2877, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Segers, V. F., T. Tokunou, L. J. Higgins, C. MacGillivray, J. Gannon, and R. T. Lee. Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation 116:1683–1692, 2007.

    Article  CAS  PubMed  Google Scholar 

  70. Silva, E. A., E. S. Kim, H. J. Kong, and D. J. Mooney. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl. Acad. Sci. USA 105:14347–14352, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Silva, E. A., and D. J. Mooney. Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J. Thromb. Haemost. 5:590–598, 2007.

    Article  CAS  PubMed  Google Scholar 

  72. Silva, E. A., and D. J. Mooney. Effects of vegf temporal and spatial presentation on angiogenesis. Biomaterials 31:1235–1241, 2010.

    Article  CAS  PubMed  Google Scholar 

  73. Sun, J., Y. Li, G. M. Graziani, L. Filion, and D. S. Allan. E-selectin mediated adhesion and migration of endothelial colony forming cells is enhanced by sdf-1alpha/cxcr4. PLoS One 8:e60890, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Suuronen, E. J., D. Kuraitis, and M. Ruel. Improving cell engraftment with tissue engineering. Semin. Thorac. Cardiovasc. Surg. 20:110–114, 2008.

    Article  PubMed  Google Scholar 

  75. Takei, A., Y. Tashiro, Y. Nakashima, and K. Sueishi. Effects of fibrin on the angiogenesis in vitro of bovine endothelial cells in collagen gel. In Vitro Cell. Dev. Biol. Anim. 31:467–472, 1995.

    Article  CAS  PubMed  Google Scholar 

  76. Takuwa, Y., W. Du, X. Qi, Y. Okamoto, N. Takuwa, and K. Yoshioka. Roles of sphingosine-1-phosphate signaling in angiogenesis. World J. Biol. Chem. 1:298–306, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tepper, O. M., R. D. Galiano, J. M. Capla, C. Kalka, P. J. Gagne, G. R. Jacobowitz, J. P. Levine, and G. C. Gurtner. Human endothelial progenitor cells from type ii diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–2786, 2002.

    Article  PubMed  Google Scholar 

  78. Vacharathit, V., E. A. Silva, and D. J. Mooney. Viability and functionality of cells delivered from peptide conjugated scaffolds. Biomaterials 32:3721–3728, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Veleva, A. N., D. E. Heath, S. L. Cooper, and C. Patterson. Selective endothelial cell attachment to peptide-modified terpolymers. Biomaterials 29:3656–3661, 2008.

    Article  CAS  PubMed  Google Scholar 

  80. Venkataraman, K., Y. M. Lee, J. Michaud, S. Thangada, Y. Ai, H. L. Bonkovsky, N. S. Parikh, C. Habrukowich, and T. Hla. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ. Res. 102:669–676, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Walter, D. H., J. Haendeler, J. Reinhold, U. Rochwalsky, F. Seeger, J. Honold, J. Hoffmann, C. Urbich, R. Lehmann, F. Arenzana-Seisdesdos, A. Aicher, C. Heeschen, S. Fichtlscherer, A. M. Zeiher, and S. Dimmeler. Impaired cxcr4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ. Res. 97:1142–1151, 2005.

    Article  CAS  PubMed  Google Scholar 

  82. Walter, D. H., U. Rochwalsky, J. Reinhold, F. Seeger, A. Aicher, C. Urbich, I. Spyridopoulos, J. Chun, V. Brinkmann, P. Keul, B. Levkau, A. M. Zeiher, S. Dimmeler, and J. Haendeler. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the cxcr4-dependent signaling pathway via the s1p3 receptor. Arterioscler. Thromb. Vasc. Biol. 27:275–282, 2007.

    Article  CAS  PubMed  Google Scholar 

  83. Wang, X., J. Chen, Q. Tao, J. Zhu, and Y. Shang. Effects of ox-ldl on number and activity of circulating endothelial progenitor cells. Drug Chem. Toxicol. 27:243–255, 2004.

    Article  CAS  PubMed  Google Scholar 

  84. Wilkerson, B. A., G. D. Grass, S. B. Wing, W. S. Argraves, and K. M. Argraves. Sphingosine 1-phosphate (s1p) carrier-dependent regulation of endothelial barrier: high density lipoprotein (hdl)-s1p prolongs endothelial barrier enhancement as compared with albumin-s1p via effects on levels, trafficking, and signaling of s1p1. J. Biol. Chem. 287:44645–44653, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Williams, P. A., R. S. Stilhano, V. P. To, L. Tran, K. Wong, and E. A. Silva. Hypoxia augments outgrowth endothelial cell (oec) sprouting and directed migration in response to sphingosine-1-phosphate (s1p). PLoS One 10:e0123437, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wu, X., E. Rabkin-Aikawa, K. J. Guleserian, T. E. Perry, Y. Masuda, F. W. Sutherland, F. J. Schoen, J. E. Mayer, Jr, and J. Bischoff. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol. 287:H480–H487, 2004.

    Article  CAS  PubMed  Google Scholar 

  87. Yoder, M. C. Endothelial progenitor cell: a blood cell by many other names may serve similar functions. J. Mol. Med. 91:285–295, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yoder, M. C., and D. A. Ingram. The definition of epcs and other bone marrow cells contributing to neoangiogenesis and tumor growth: is there common ground for understanding the roles of numerous marrow-derived cells in the neoangiogenic process? Biochim. Biophys. Acta. 1796:50–54, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yoder, M. C., L. E. Mead, D. Prater, T. R. Krier, K. N. Mroueh, F. Li, R. Krasich, C. J. Temm, J. T. Prchal, and D. A. Ingram. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, G., X. Wang, Z. Wang, J. Zhang, and L. Suggs. A pegylated fibrin patch for mesenchymal stem cell delivery. Tissue Eng. 12:9–19, 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the American Heart Association (15BGIA25730057 and 15PRE22930044) and the Hellman Family for the funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo A. Silva.

Additional information

Associate Editor K. A. Athanasiou oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, P.A., Silva, E.A. The Role of Synthetic Extracellular Matrices in Endothelial Progenitor Cell Homing for Treatment of Vascular Disease. Ann Biomed Eng 43, 2301–2313 (2015). https://doi.org/10.1007/s10439-015-1400-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1400-x

Keywords

Navigation