Skip to main content

Advertisement

Log in

Emerging Brain Morphologies from Axonal Elongation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Understanding the characteristic morphology of our brain remains a challenging, yet important task in human evolution, developmental biology, and neurosciences. Mathematical modeling shapes our understanding of cortical folding and provides functional relations between cortical wavelength, thickness, and stiffness. Yet, current mathematical models are phenomenologically isotropic and typically predict non-physiological, periodic folding patterns. Here we establish a mechanistic model for cortical folding, in which macroscopic changes in white matter volume are a natural consequence of microscopic axonal growth. To calibrate our model, we consult axon elongation experiments in chick sensory neurons. We demonstrate that a single parameter, the axonal growth rate, explains a wide variety of in vitro conditions including immediate axonal thinning and gradual thickness restoration. We embed our axonal growth model into a continuum model for brain development using axonal orientation distributions motivated by diffusion spectrum imaging. Our simulations suggest that white matter anisotropy—as an emergent property from directional axonal growth—intrinsically induces symmetry breaking, and predicts more physiological, less regular morphologies with regionally varying gyral wavelengths and sulcal depths. Mechanistic modeling of brain development could establish valuable relationships between brain connectivity, brain anatomy, and brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abaqus 6.12. Analysis User’s Manual, 2012. SIMULIA. Dassault Systèmes.

  2. Ambrosi, D., G. A. Ateshian, E. M. Arruda, S. C. Cowin, J. Dumais, A. Goriely, G. A. Holzapfel, J. D. Humphrey, R. Kemker, E. Kuhl, J. E. Olberding, L. A. Taber, and K. Garikipati. Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59:863–883, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bardin, J. Neuroscience: making connections. Nature 483:394–396, 2012.

    Article  CAS  PubMed  Google Scholar 

  4. Barron, D. An experimental analysis of some factors involved in the development of the fissure pattern of the cerebral cortex. J. Exp. Zool. 113:553581, 1950.

    Article  Google Scholar 

  5. Bayly, P. V., R. J. Okamoto, G. Xu, Y. Shi, Y., and L. A. Taber. A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Phys. Biol. 10:16005, 2013.

    Article  CAS  Google Scholar 

  6. Bayly, P. V., L. A. Taber, and C. D. Kroenke. Mechanical forces in cerebral cortical folding: a review of measurements and models.J. Mech. Behav. Biomed. Mater. 29:568–581, 2014.

    Article  CAS  PubMed  Google Scholar 

  7. Biot, M. A. Folding instability of a layered viscoelastic medium under compression. Proc. R. Soc. Lond. A 242:444–454, 1957.

    Article  CAS  Google Scholar 

  8. Bray, D. Axonal growth in response to experimentally applied mechanical tension. Dev. Biol. 102:379–389, 1984.

    Article  CAS  PubMed  Google Scholar 

  9. Budday, S., E. Kuhl, and J. W. Hutchinson. Period-doubling and period-tripling in growing bilayered systems. Philos. Mag. 2015. doi:10.1080/14786435.2015.1014443.

    Google Scholar 

  10. Budday, S., R. Nay, R. de Rooij, P. Steinmann, T. Wyrobek, T. C. Ovaert, and E. Kuhl. Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater. 2015. doi:10.1016/j.jmbbm.2015.02.024.

    PubMed  Google Scholar 

  11. Budday, S., C. Raybaud, and E. Kuhl. A mechanical model predicts morphological abnormalities in the developing human brain. Sci. Rep. 4:5644, 2014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Budday, S., P. Steinmann, and E. Kuhl. The role of mechanics during brain development. J. Mech. Phys. Solids. 72:75–92, 2014.

    Article  PubMed  Google Scholar 

  13. Cao, Y. and J. W. Hutchinson. Wrinkling phenomena in neo-Hookean film/substrate bilayers. J. Appl. Mech. 79:031019, 2012

    Article  Google Scholar 

  14. Dennerll, T. J., P. Lamoureux, R. E. Buxbaum, and S. R. Heidemann. The cytomechanics of axonal elongation and retraction. J. Cell Biol. 109:3073–3083, 1989.

    Article  CAS  PubMed  Google Scholar 

  15. Feng, Y., E. H. Clayton, Y Chang, R. J. Okamoto, P. V. Bayly. Viscoelastic properties of the ferret brain measured in vivo at multiple frequencies by magnetic resonance elastography. J. Biomech. 46:863–870, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Feng, Y., R. J. Okamoto, R. Namani, G. M. Genin, and P. V. Bayly. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23:117–132, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Fishman, I., C. L. Keown, A. J. Lincoln, J. A. Pineda, and R. A. Müller. Atypical cross talk between mentalizing and mirror neuron networks in autism spectrum disorder. JAMA Psychiatry 71:751–760, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Franceschini, G., D. Bigoni, P. Regitnig, and G. A. Holzapfel. Brain tissue deforms similar to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54:2592–2620, 2006.

    Article  Google Scholar 

  19. Franze, K. The mechanical control of nervous system development. Development 140:3069–3077, 2013.

    Article  CAS  PubMed  Google Scholar 

  20. Franze, K., P. A. Janmey, and J. Guck. Mechanics in neuronal development and repair. Ann. Rev. Biomed. Eng. 15:227–251, 2013.

    Article  CAS  Google Scholar 

  21. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface. 3:15–35, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Göktepe, S., O. J. Abilez, and E. Kuhl. A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J. Mech. Phys. Solids 58:1661–1680, 2010.

    Article  Google Scholar 

  23. Goldmann-Rakic, P. S. Development of cortical circuitry and cognitive function. Child Dev. 58:601–622, 1987.

    Article  Google Scholar 

  24. Goriely, A., M. G. D. Geers, G. A. Holzapfel, J. Jayamohan, A. Jerusalem, S. Sivaloganathan, W. Squier, J. A.W. van Dommelen, S. Waters, and E. Kuhl. Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol. 2015. doi:10.1007/s10237-015-0662-4.

    Google Scholar 

  25. Hardan, A. Y., R. J. Jou, M. S. Keshavan, R. Varma, and N. J. Minshew. Increased frontal cortical folding in autism: a preliminary MRI study. Psychiatry Res. 131:263–268, 2004.

    Article  PubMed  Google Scholar 

  26. Himpel, G., A. Menzel, E. Kuhl, and P. Steinmann. Time-dependent fiber reorientation of transversely isotropic continua—finite element formulation and consistent linearization. Int. J. Numer. Methods Eng. 73:1413–1433, 2008.

    Article  Google Scholar 

  27. Hofman, M. A. On the evolution and geometry of the brain in mammals. Progr. Neurobiol. 32:137–158, 1989.

    Article  CAS  Google Scholar 

  28. Huang, R. Kinetic wrinkling of an elastic film on a viscoelastic substrate. J. Mech. Phys. Solids. 53:63–89, 2005.

    Article  Google Scholar 

  29. Kostovic, I. and N. Jovanov-Milosevic. The development of cerebral connections during the first 20–45 weeks’ gestation. Semin. Fetal Neonatal Med. 11:415–422, 2006.

    Article  PubMed  Google Scholar 

  30. Kuhl, E. and P. Steinmann. Mass- and volume specific views on thermodynamics for open systems. Proc. R. Soc. 459:2547–2568, 2003.

    Article  Google Scholar 

  31. Lamoureux, P., S. R. Heidemann, N. R. Martzke, and K. E. Miller. Growth and elongation within and along the axon. Dev. Neurobiol. 70:135–149, 2010.

    Article  Google Scholar 

  32. Loverde, J. R., V. C. Ozoka, R. Aquino, L. Lin, and B. J. Pfister. Live imaging of axon stretch growth in embryonic and adult neurons. J. Neurotrauma 28:2389–2403, 2011.

    Article  PubMed  Google Scholar 

  33. Menzel, A. and Kuhl E. Frontiers in growth and remodeling. Mech. Res. Commun. 42:1–14, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Nordahl, C. W., D. Dierker, I. Mostafavi, C. M. Schumann, S. M. Rivera, D. G. Amaral, and D. C. Van Essen. Cortical folding abnormalities in autism revealed by surface-based morphometry. J. Neurosci. 27:11725–11735, 2007.

    Article  CAS  PubMed  Google Scholar 

  35. O’Toole, M., P. Lamoureux, and K. E. Miller. A physical model of axonal elongation: force, viscosity, and adhesions govern the mode of outgrowth. Biophys. J. 94:2610–2620, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  36. O’Toole, M., R. Latham, R. M. Baqri, and K. E. Miller. Modeling mitochondrial dynamics during in vivo axonal elongation. J. Theor. Biol. 255:369–377, 2008.

    Article  Google Scholar 

  37. Partridge, S. C., P. Mukherjee, R. G. Henry, S. P. Miller, J.I. Berman, H. Jin, Y. Lu, O. A. Glenn, D. M. Ferriero, A. J. Barkovich, D. B. Vigneron. Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. Neuroimage 22:1302–2014, 2004.

    Article  PubMed  Google Scholar 

  38. Pfister, B. J., A. Iwata, D. F. Meaney, D. H. Smith. Extreme stretch growth of integrated axons. J. Neurosci. 24:7978–7983, 2004.

    Article  CAS  PubMed  Google Scholar 

  39. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10:724–735, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Raybaud, C., T. Ahmad, N. Rastegar, M. Shroff, and M. Al Nassar. The premature brain: developmental and lesional anatomy. Neuroradiology 55:S23–S40, 2013.

    Article  Google Scholar 

  41. Reillo, I., C. de Juan Romero, M.A. Garcia-Cabezas, and V. Borrell. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21:1674–1694, 2011.

    Article  PubMed  Google Scholar 

  42. Richman, D. P., R. M. Stewart, J. W. Hutchinson, and V. S. Caviness. Mechanical model of brain convolutional development. Science 189:18–21, 1975.

    Article  Google Scholar 

  43. Rodriguez, E. K., A. Hoger, and A. D. McCulloch. Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27:455–467, 1994.

    Article  CAS  PubMed  Google Scholar 

  44. Roossien, D. H., P. Lamoureux, and K. E. Miller. Cytoplastmic dynein pushes the cytoskeletal meshwork forward during axonal elongation. J. Cell Sci. 127:3593–3602, 2014.

    Article  CAS  PubMed  Google Scholar 

  45. Sallet, P. C., H. Elkis, T. M. Alves, J. R. Oliveira, E. Sassi, C. Campi de Castro, G. F. Busatto, and W. F. Gattaz. Reduced cortical folding in schizophrenia: an MRI morphometric study. Am. J. Psychiatry 160:1606–1613, 2003.

    Article  PubMed  Google Scholar 

  46. Serag, A., P. Aljabar, G. Ball, S. J. Counsell, J. P. Boardman, M. A. Rutherford, A. D. Edwards, J. V. Hajnal, D. Rueckert. Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. NeuroImage 59:2255–2265, 2012.

    Article  PubMed  Google Scholar 

  47. Smart, I. H. M. and G. M. McSherry. Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes. J. Anat. 146: 141–152, 1986.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Sultan, E. and A. Boudaoud. The buckling of a swollen thin gel layer bound to a compliant substrate. J. Appl. Mech. 75:051002, 2008.

    Article  Google Scholar 

  49. Sun, T. and R. F. Hevner. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat. Rev. Neurosci. 15:217–232, 2014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Suter, D. M. and K. E. Miller. The emerging role of forces in axonal elongation. Prog. Neurobiol. 94:91–101, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Tallinen, T., J. Y. Chung, J. S. Biggins, and L. Mahadevan. Gyrification from constrained cortical expansion. Proc. Natl. Acad. Sci. 111:12667–12672, 2014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Toro, R. On possible shapes of the brain. Evol. Biol. 39:600–612, 2012.

    Article  Google Scholar 

  53. Toro, R. and Y. Burnod. A morphological model for the development of cortical convolutions. Cereb. Cortex 15:1900–1913, 2005.

    Article  PubMed  Google Scholar 

  54. van Dommelen, J. A. W., T. P.J. van der Sande, M. Hrapko, and G. W. M. Peters. Mechanical properties of brain tissue by indentation: interregional variation. J. Mech. Behav. Biomed. Mater. 3:158–166, 2010.

    Article  PubMed  Google Scholar 

  55. Van Essen, D. C. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318, 1997.

    Article  PubMed  Google Scholar 

  56. Welker, W. Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci. In: Cerebral Corte, Vol. 8, edited by E. G. Jones and A. Peters. New York: Springer, 1990, pp. 3–136.

  57. Xu, G., P. V. Bayly, and L. A. Taber. Residual stress in the adult mouse brain. Biomech. Model. Mechanobiol. 8:253–262, 2008.

    Article  PubMed  Google Scholar 

  58. Xu, G., A. K. Knutsen, K. Dikranian, C. D. Kroenke, P. V. Bayly, and L. A. Taber. Axons pull on the brain, but tension does not drive cortical folding. J. Biomech. Eng. 132:071013, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Zöllner, A. M., O. J. Abilez, M. Böl, and E. Kuhl. Stretching skeletal muscle—chronic muscle lengthening through sarcomerogenesis. PLoS One 7:e45661, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Zöllner, A. M., M. A. Holland, K. S. Honda, A. K. Gosain, and E. Kuhl. Growth on demand—reviewing the mechanobiology of stretched skin. J. Mech. Behav. Biomed. Mater. 28:495–509, 2013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation Graduate Research Fellowship and by the Stanford Graduate Fellowship to Maria A. Holland, by the National Science Foundation Grant IOS 0951019 to Kyle E. Miller, and by the Stanford Bio-X Interdisciplinary Initiatives Program, by the National Science Foundation CAREER award CMMI 0952021, and by the National Institutes of Health Grant U01 HL119578 to Ellen Kuhl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Kuhl.

Additional information

Associate Editor Gerhard A. Holzapfel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holland, M.A., Miller, K.E. & Kuhl, E. Emerging Brain Morphologies from Axonal Elongation. Ann Biomed Eng 43, 1640–1653 (2015). https://doi.org/10.1007/s10439-015-1312-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1312-9

Keywords

Navigation