Skip to main content
Log in

Emerging Trends in Heart Valve Engineering: Part I. Solutions for Future

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

As the first section of a multi-part review series, this section provides an overview of the ongoing research and development aimed at fabricating novel heart valve replacements beyond what is currently available for patients. Here we discuss heart valve replacement options that involve a biological component or process for creation, either in vitro or in vivo (tissue-engineered heart valves), and heart valves that are fabricated from polymeric material that are considered permanent inert materials that may suffice for adults where growth is not required. Polymeric materials provide opportunities for cost-effective heart valves that can be more easily manufactured and can be easily integrated with artificial heart and ventricular assist device technologies. Tissue engineered heart valves show promise as a regenerative patient specific model that could be the future of all valve replacement. Because tissue-engineered heart valves depend on cells for their creation, understanding how cells sense and respond to chemical and physical stimuli in their microenvironment is critical and therefore, is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Akutsu, T., B. Dreyer, and W. J. Kolff. Polyurethane artificial heart valves in animals. J. Appl. Physiol. 14:1045–1048, 1959.

    CAS  PubMed  Google Scholar 

  2. Alavi, S. H. Towards development of hybrid engineered heart valves. PhD Thesis. 2014.

  3. Alavi, S. H., and A. Kheradvar. Metal mesh scaffold for tissue engineering of membranes. Tissue Eng. Part C 18:293–301, 2012.

    Article  CAS  Google Scholar 

  4. Alavi, S. H., W. F. Liu, and A. Kheradvar. Inflammatory response assessment of a hybrid tissue-engineered heart valve leaflet. Ann. Biomed. Eng. 41:316–326, 2013.

    Article  PubMed  Google Scholar 

  5. Ando, M., and Y. Takahashi. Ten-year experience with handmade trileaflet polytetrafluoroethylene valved conduit used for pulmonary reconstruction. J. Thorac. Cardiovasc. Surg. 137:124–131, 2009.

    Article  PubMed  Google Scholar 

  6. Balachandran, K., S. Konduri, P. Sucosky, H. Jo, and A. P. Yoganathan. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34:1655–1665, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am. J. Physiol. 296:H756–H764, 2009.

    CAS  Google Scholar 

  8. Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am. J. Pathol. 177:49–57, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Benton, J. A., C. A. DeForest, V. Vivekanandan, and K. S. Anseth. Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng. Part A 15:3221–3230, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Benton, J. A., B. D. Fairbanks, and K. S. Anseth. Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels. Biomaterials 30:6593–6603, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Benton, J. A., H. B. Kern, and K. S. Anseth. Substrate properties influence calcification in valvular interstitial cell culture. J. Heart Valve Dis. 17:689–699, 2008.

    PubMed Central  PubMed  Google Scholar 

  12. Bernacca, G. M., T. G. Mackay, M. J. Gulbransen, A. W. Donn, and D. J. Wheatley. Polyurethane heart valve durability: effects of leaflet thickness and material. Int. J. Artif. Organs 20:327–331, 1997.

    CAS  PubMed  Google Scholar 

  13. Bernacca, G. M., T. G. Mackay, R. Wilkinson, and D. J. Wheatley. Calcification and fatigue failure in a polyurethane heart-valve. Biomaterials 16:279–285, 1995.

    Article  CAS  PubMed  Google Scholar 

  14. Bernacca, G. M., T. G. Mackay, R. Wilkinson, and D. J. Wheatley. Polyurethane heart valves: fatigue failure, calcification, and polyurethane structure. J. Biomed. Mater. Res. 34:371–379, 1997.

    Article  CAS  PubMed  Google Scholar 

  15. Bernacca, G. M., B. O’Connor, D. F. Williams, and D. J. Wheatley. Hydrodynamic function of polyurethane prosthetic heart valves: influences of young’s modulus and leaflet thickness. Biomaterials 23:45–50, 2002.

    Article  CAS  PubMed  Google Scholar 

  16. Bernacca, G. M., I. Straub, and D. J. Wheatley. Mechanical and morphological study of biostable polyurethane heart valve leaflets explanted from sheep. J. Biomed. Mater. Res. 61:138–145, 2002.

    Article  CAS  PubMed  Google Scholar 

  17. Bezuidenhout, D., and P. Zilla. Flexible leaflet polymeric heart valves. In: Cardiovascular and Cardiac Therapeutic Devices, edited by F. Thomas. New York: Springer 2014, pp. 93–130.

  18. Bouten, C., P. Dankers, A. Driessen-Mol, S. Pedron, A. Brizard, and F. Baaijens. Substrates for cardiovascular tissue engineering. Adv. Drug Deliv. Rev. 63:221–241, 2011.

    Article  CAS  PubMed  Google Scholar 

  19. Braunwal, N. S., and A. G. Morrow. A late evaluation of flexible teflon prostheses utilized for total aortic valve replacement—postoperative clinical hemodynamic and pathological assessments. J. Thorac. Cardiovasc. Surg. 49:485–496, 1965.

    Google Scholar 

  20. Breuer, C. K., B. A. Mettler, T. Anthony, V. L. Sales, F. J. Schoen, and J. E. Mayer. Application of tissue-engineering principles toward the development of a semilunar heart valve substitute. Tissue Eng. 10:1725–1736, 2004.

    Article  CAS  PubMed  Google Scholar 

  21. Butcher, J. T., G. J. Mahler, and L. A. Hockaday. Aortic valve disease and treatment: the need for naturally engineered solutions. Adv. Drug Deliv. Rev. 63:242–268, 2011.

    Article  CAS  PubMed  Google Scholar 

  22. Butterfield, M., D. J. Wheatley, D. F. Williams, and J. Fisher. A new design for polyurethane heart valves. J. Heart Valve Dis. 10:105–110, 2001.

    CAS  PubMed  Google Scholar 

  23. Carapetis, J. R., A. C. Steer, E. K. Mulholland, and M. Weber. The global burden of group a streptococcal diseases. Lancet. Infect. Dis. 5:685–694, 2005.

    Article  PubMed  Google Scholar 

  24. Chaffin, K. A., A. J. Buckalew, J. L. Schley, X. Chen, M. Jolly, J. A. Alkatout, J. P. Miller, D. F. Untereker, M. A. Hillmyer, and F. S. Bates. Influence of water on the structure and properties of PDMS-containing multiblock polyurethanes. Macromolecules 45:9110–9120, 2012.

    Article  CAS  Google Scholar 

  25. Chen, J. H., W. L. Chen, K. L. Sider, C. Y. Yip, and C. A. Simmons. {beta}-Catenin mediates mechanically regulated, transforming growth factor-{beta}1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler. Thromb. Vasc. Biol. 31:590–597, 2011.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, W. L. K, K. L. Sider, C. A. Simmons. Matrix mechanical and biochemical regulation of mouse multipotent stromal cell (MSC) lineage specification. PhD Thesis, 2014.

  27. Chen, J. H., and C. A. Simmons. Cell–matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circ. Res. 108:1510–1524, 2011.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, J. H., C. Y. Yip, E. D. Sone, and C. A. Simmons. Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. Am. J. Pathol. 174:1109–1119, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Clift, S. E., and J. Fisher. Finite element stress analysis of a new design of synthetic leaflet heart valve. Proc. Inst. Mech. Eng. H 210:267–272, 1996.

    Article  CAS  PubMed  Google Scholar 

  30. Colas, A., and J. Curtis. Silicone biomaterials: History and chemistry. In: Biomaterials Science: An Introduction to Materials in Medicine, edited by B. D. Rattner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons. San Diego: Elsevier, 2004.

    Google Scholar 

  31. Coury, A., P. Slaikey, P. Cahalan, and K. Stokes. Medical applications of implantable polyurethanes: current issues. Progress Rubber Plast. Technol. 3:24–37, 1987.

    CAS  Google Scholar 

  32. Cox, J. L., N. Ad, K. Myers, M. Gharib, and R. C. Quijano. Tubular heart valves: a new tissue prosthesis design–preclinical evaluation of the 3f aortic bioprosthesis. J. Thorac. Cardiovasc. Surg. 130:520–527, 2005.

    Article  PubMed  Google Scholar 

  33. Cushing, M. C., J. T. Liao, M. P. Jaeggli, and K. S. Anseth. Material-based regulation of the myofibroblast phenotype. Biomaterials 28:3378–3387, 2007.

    Article  CAS  PubMed  Google Scholar 

  34. Daebritz, S. H., B. Fausten, B. Hermanns, A. Franke, J. Schroeder, J. Groetzner, R. Autschbach, B. J. Messmer, and J. S. Sachweh. New flexible polymeric heart valve prostheses for the mitral and aortic positions. Heart Surgery Forum 7:E525–E532, 2004.

    Article  PubMed  Google Scholar 

  35. Daebritz, S. H., B. Fausten, B. Hermanns, J. Schroeder, J. Groetzner, R. Autschbach, B. J. Messmer, and J. S. Sachweh. Introduction of a flexible polymeric heart valve prosthesis with special design for aortic position. Eur. J. Cardiothorac. Surg. 25:946–952, 2004.

    Article  PubMed  Google Scholar 

  36. Daebritz, S. H., J. S. Sachweh, B. Hermanns, B. Fausten, A. Franke, J. Groetzner, B. Klosterhalfen, and B. J. Messmer. Introduction of a flexible polymeric heart valve prosthesis with special design for mitral position. Circulation 108:134–139, 2003.

    Article  Google Scholar 

  37. d’Arcy, J. L., B. D. Prendergast, J. B. Chambers, S. G. Ray, and B. Bridgewater. Valvular heart disease: the next cardiac epidemic. Heart 97:91–93, 2011.

    Article  PubMed  Google Scholar 

  38. Dijkman, P. E., A. Driessen-Mol, L. Frese, S. P. Hoerstrup, and F. P. T. Baaijens. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials 33:4545–4554, 2012.

    Article  CAS  PubMed  Google Scholar 

  39. Driessen-Mol, A., M. Y. Emmert, P. E. Dijkman, L. Frese, B. Sanders, B. Weber, N. Cesarovic, M. Sidler, J. Leenders, R. Jenni, J. Grünenfelder, V. Falk, F. P. T. Baaijens, and S. P. Hoerstrup. Transcatheter implantation of homologous “off-the-shelf” tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. J. Am. Coll. Cardiol. 63:1320–1329, 2014.

    Article  PubMed  Google Scholar 

  40. Durst, C. A., M. P. Cuchiara, E. G. Mansfield, J. L. West, and K. J. Grande-Allen. Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomater. 7:2467–2476, 2011.

    Article  CAS  PubMed  Google Scholar 

  41. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  42. Fung, Y. C. Biomechanics: Mechanical properties of living tissues. Berlin: Springer, 1993.

    Book  Google Scholar 

  43. Ghanbari, H., A. G. Kidane, G. Burriesci, B. Ramesh, A. Darbyshire, and A. M. Seifalian. The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve. Acta Biomater. 6:4249–4260, 2010.

    Article  CAS  PubMed  Google Scholar 

  44. Ghista, D. N., and H. Reul. Optimal prosthetic aortic leaflet valve—design parametric and longevity analyses—development of avcothane-51 leaflet valve based on optimum design analysis. J. Biomech. 10:313–324, 1977.

    Article  CAS  PubMed  Google Scholar 

  45. Gould, S. T., N. J. Darling, and K. S. Anseth. Small peptide functionalized thiol-ene hydrogels as culture substrates for understanding valvular interstitial cell activation and de novo tissue deposition. Acta Biomater. 8:3201–3209, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Gould, S. T., S. Srigunapalan, C. A. Simmons, and K. S. Anseth. Hemodynamic and cellular response feedback in calcific aortic valve disease. Circ. Res. 113:186–197, 2013.

    Article  CAS  PubMed  Google Scholar 

  47. Grande-Allen, K. J., A. Calabro, V. Gupta, T. N. Wight, V. C. Hascall, and I. Vesely. Glycosaminoglycans and proteoglycans in normal mitral valve leaflets and chordae: association with regions of tensile and compressive loading. Glycobiology 14:621–633, 2004.

    Article  CAS  PubMed  Google Scholar 

  48. Gu, X., and K. S. Masters. Regulation of valvular interstitial cell calcification by adhesive peptide sequences. J. Biomed. Mater. Res. 93:1620–1630, 2010.

    Google Scholar 

  49. Hilbert, S. L., V. J. Ferrans, Y. Tomita, E. E. Eidbo, and M. Jones. Evaluation of explanted polyurethane trileaflet cardiac-valve prostheses. J. Thorac. Cardiovasc. Surg. 94:419–429, 1987.

    CAS  PubMed  Google Scholar 

  50. Hinton, R. B., and K. E. Yutzey. Heart valve structure and function in development and disease. Annu. Rev. Physiol. 73:29–46, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer, Jr. Functional living trileaflet heart valves grown in vitro. Circulation 102:III-44-49, 2000.

    Article  Google Scholar 

  52. James, S. P., R. K. Oldinski, M. Zhang, and H. Schwartz. Chapter 18: UHMWPE/hyaluronan microcomposite biomaterials. In: UHMWPE Handbook, edited by S. Kurtz. Amsterdam: Elsevier, 2009.

    Google Scholar 

  53. Jansen, J., and H. Reul. A synthetic 3-leaflet valve. J. Med. Eng. Technol. 16:27–33, 1992.

    Article  CAS  PubMed  Google Scholar 

  54. Jansen, J., S. Willeke, B. Reiners, P. Harbott, H. Reul, and G. Rau. New j-3 flexible-leaflet polyurethane heart-valve prosthesis with improved hydrodynamic performance. Int. J. Artif. Organs 14:655–660, 1991.

    CAS  PubMed  Google Scholar 

  55. Kidane, A. G., G. Burriesci, M. Edirisinghe, H. Ghanbari, P. Bonhoeffer, and A. M. Seifalian. A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomater. 5:2409–2417, 2009.

    Article  CAS  PubMed  Google Scholar 

  56. Kloxin, A. M., J. A. Benton, and K. S. Anseth. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31:1–8, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Krishnamurthy, G., A. Itoh, J. C. Swanson, W. Bothe, M. Karlsson, E. Kuhl, D. C. Miller, and N. B. Ingels, Jr. Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart. J. Biomech. 42:2697–2701, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Krishnamurthy, G., A. Itoh, J. C. Swanson, D. C. Miller, and N. B. Ingels, Jr. Transient stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 298:H2221–H2225, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Leat, M. E., and J. Fisher. The influence of manufacturing methods on the function and performance of a synthetic leaflet heart valve. Proc. Inst. Mech. Eng. H 209:65–69, 1995.

    Article  CAS  PubMed  Google Scholar 

  60. Lee, H. J., J.-S. Lee, T. Chansakul, C. Yu, J. H. Elisseeff, and S. M. Yu. Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. Biomaterials 27:5268–5276, 2006.

    Article  CAS  PubMed  Google Scholar 

  61. Mackay, T. G., D. J. Wheatley, G. M. Bernacca, A. C. Fisher, and C. S. Hindle. New polyurethane heart valve prosthesis: design, manufacture and evaluation. Biomaterials 17:1857–1863, 1996.

    Article  CAS  PubMed  Google Scholar 

  62. Mann, B. K., A. S. Gobin, A. T. Tsai, R. H. Schmedlen, and J. L. West. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051, 2001.

    Article  CAS  PubMed  Google Scholar 

  63. Masters, K. S., D. N. Shah, L. A. Leinwand, and K. S. Anseth. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials 26:2517–2525, 2005.

    Article  CAS  PubMed  Google Scholar 

  64. Masters, K. S., D. N. Shah, G. Walker, L. A. Leinwand, and K. S. Anseth. Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials. J. Biomed. Mater. Res. Part A 71A:172–180, 2004.

    Article  CAS  Google Scholar 

  65. Mendelson, K., and F. Schoen. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann. Biomed. Eng. 34:1799–1819, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Merryman, W. D., H. D. Lukoff, R. A. Long, G. C. Engelmayr, Jr., R. A. Hopkins, and M. S. Sacks. Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. Cardiovasc. Pathol. 16:268–276, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Mewissen, M. W. Primary nitinol stenting for femoropopliteal disease. J. Endovasc. Ther. 16:II63–II81, 2009.

    Article  PubMed  Google Scholar 

  68. Mohri, H., E. A. Hessel, R. J. Nelson, H. N. Anderson, D. H. Dillard, and K. A. Merendin. Design and durability test of silastic trileaflet aortic-valve prostheses. J. Thorac. Cardiovasc. Surg. 65:576–582, 1973.

    Google Scholar 

  69. Moraes, C., M. Likhitpanichkul, C. J. Lam, B. M. Beca, Y. Sun, and C. A. Simmons. Microdevice array-based identification of distinct mechanobiological response profiles in layer-specific valve interstitial cells. Integr. Biol. Quant. Biosci. Nano Macro 5:673–680, 2013.

    CAS  Google Scholar 

  70. Muller, W. H., W. D. Warren, J. F. Dammann, J. R. Beckwith, and J. E. Wood. Surgical relief of aortic insufficiency by direct operation on the aortic valve. Circulation 21:587–597, 1960.

    Article  PubMed  Google Scholar 

  71. Nistal, F., V. Garciamartinez, E. Arbe, D. Fernandez, E. Artinano, F. Mazorra, and I. Gallo. Invivo experimental assessment of polytetrafluoroethylene trileaflet heart-valve prosthesis. J. Thorac. Cardiovasc. Surg. 99:1074–1081, 1990.

    CAS  PubMed  Google Scholar 

  72. Pho, M., W. Lee, D. R. Watt, C. Laschinger, C. A. Simmons, and C. A. McCulloch. Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am. J. Physiol. 294:H1767–H1778, 2008.

    CAS  Google Scholar 

  73. Plimpton, S. R., W. Liu, and A. Kheradvar. Immunological and phenotypic considerations in supplementing cardiac biomaterials with cells. In: Biomaterials for Cardiac Regeneration, edited by E. J. Suuronen, and M. Ruel. Berlin: Springer International Publishing, 2015, pp. 239–273.

    Chapter  Google Scholar 

  74. Prawel, D. A., H. Dean, M. Forleo, N. Lewis, J. Gangwish, K. C. Popat, L. P. Dasi, and S. P. James. Hemocompatibility and hemodynamics of novel hyaluronan–polyethylene materials for flexible heart valve leaflets. Cardiovasc. Eng. Technol. 5:70–81, 2014.

  75. Rabkin, E., and F. J. Schoen. Cardiovascular tissue engineering. Cardiovasc. Pathol. 11:305–317, 2002.

    Article  PubMed  Google Scholar 

  76. Rabkin-Aikawa, E., J. E. Mayer, Jr., and F. J. Schoen. Heart valve regeneration. Adv. Biochem. Eng. Biotechnol. 94:141–179, 2005.

    PubMed  Google Scholar 

  77. Rahmani, B., S. Tzamtzis, H. Ghanbari, G. Burriesci, and A. M. Seifalian. Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer. J. Biomech. 45:1205–1211, 2012.

    Article  PubMed  Google Scholar 

  78. Rausch, M. K., N. Famaey, T. O. B. Shultz, W. Bothe, D. C. Miller, and E. Kuhl. Mechanics of the mitral valve. Biomech. Model. Mechanobiol. 12:1053–1071, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Rodriguez, K. J., and K. S. Masters. Regulation of valvular interstitial cell calcification by components of the extracellular matrix. J. Biomed. Mater. Res. 90:1043–1053, 2009.

    Article  CAS  Google Scholar 

  80. Roe, B. B. Late follow-up studies on flexible leaflet prosthetic valves. J. Thorac. Cardiovasc. Surg. 58:59–61, 1969.

    CAS  PubMed  Google Scholar 

  81. Roe, B. B., M. F. Burke, and H. Zehner. The subcoronary implantation of a flexible tricuspid aortic valve prosthesis. J. Thorac. Cardiovasc. Surg. 40:561–567, 1960.

    CAS  PubMed  Google Scholar 

  82. Roe, B. B., P. B. Kelly, J. L. Myers, and D. W. Moore. Tricuspid leaflet aortic valve prosthesis. Circulation 33:I124–I130, 1966.

    Article  CAS  PubMed  Google Scholar 

  83. Roe, B. B., and D. W. Moore. Design and fabrication of prosthetic valves. Exp. Med. Surg. 16:177–182, 1958.

    CAS  PubMed  Google Scholar 

  84. Roe, B., J. Owsley, and P. Boudoures. Experimental results with a prosthetic aortic valve. J. Thorac. Surg. 36:563, 1958.

    CAS  PubMed  Google Scholar 

  85. Sachweh, J. S., and S. H. Daebritz. Novel “biomechanical” polymeric valve prostheses with special design for aortic and mitral position: a future option for pediatric patients? ASAIO J. 52:575–580, 2006.

    CAS  PubMed  Google Scholar 

  86. Sacks, M. S. Biaxial mechanical evaluation of planar biological materials. J. Elast. 61:199–246, 2000.

    Article  Google Scholar 

  87. Sacks, M. S., F. J. Schoen, and J. E. Mayer. Bioengineering challenges for heart valve tissue engineering. Annu. Rev. Biomed. Eng. 11:289–313, 2009.

    Article  CAS  PubMed  Google Scholar 

  88. Sacks, M. S., and A. P. Yoganathan. Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. B 362:1369–1391, 2007.

    Article  Google Scholar 

  89. Schmidt, D., P. E. Dijkman, A. Driessen-Mol, R. Stenger, C. Mariani, A. Puolakka, M. Rissanen, T. Deichmann, B. Odermatt, and B. Weber. Minimally-invasive implantation of living tissue engineered heart valves comprehensive approach from autologous vascular cells to stem cells. J. Am. Coll. Cardiol. 56:510–520, 2010.

    Article  PubMed  Google Scholar 

  90. Schoen, F. J. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation 118:1864–1880, 2008.

    Article  PubMed  Google Scholar 

  91. Shah, D. N., S. M. Recktenwall-Work, and K. S. Anseth. The effect of bioactive hydrogels on the secretion of extracellular matrix molecules by valvular interstitial cells. Biomaterials 29:2060–2072, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Shinoka, T., C. K. Breuer, R. E. Tanel, G. Zund, T. Miura, P. X. Ma, R. Langer, J. P. Vacanti, and J. E. Mayer, Jr. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann. Thorac. Surg. 60:S513–S516, 1995.

    Article  CAS  PubMed  Google Scholar 

  93. Shinoka, T., P. X. Ma, D. Shum-Tim, C. K. Breuer, R. A. Cusick, G. Zund, R. Langer, J. P. Vacanti, and J. E. Mayer, Jr. Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94:164–168, 1996.

    Google Scholar 

  94. Stephens, E. H., C. A. Durst, J. L. West, and K. J. Grande-Allen. Mitral valvular interstitial cell responses to substrate stiffness depend on age and anatomic region. Acta Biomater. 7:75–82, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Sutherland, F. W., T. E. Perry, Y. Yu, M. C. Sherwood, E. Rabkin, Y. Masuda, G. A. Garcia, D. L. McLellan, G. C. Engelmayr, and M. S. Sacks. From stem cells to viable autologous semilunar heart valve. Circulation 111:2783–2791, 2005.

    Article  PubMed  Google Scholar 

  96. Syedain, Z., L. A. Meier, M. T. Lahti, S. Johnson, and R. T. Tranquillo. Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng. Part A. 20:1726–1734, 2014.

  97. Syedain, Z. H., L. A. Meier, J. M. Reimer, and R. T. Tranquillo. Tubular heart valves from decellularized engineered tissue. Ann. Biomed. Eng. 41:2645–2654, 2013.

    Article  PubMed  Google Scholar 

  98. Syedain, Z. H., and R. T. Tranquillo. Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials 30:4078–4084, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Tseng, H., M. Cuchiara, C. Durst, M. Cuchiara, C. Lin, J. West, and K. J. Grande-Allen. Fabrication and mechanical evaluation of anatomically-inspired quasilaminate hydrogel structures with layer-specific formulations. Ann. Biomed. Eng. 41:398–407, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Tseng, H., D. S. Puperi, E. J. Kim, S. Ayoub, J. V. Shah, M. L. Cuchiara, J. L. West, and K. J. Grande-Allen. Anisotropic poly(ethylene glycol)/polycaprolactone (PEG/PCL) hydrogel-fiber composites for heart valve tissue engineering. Tissue Eng. Part A. 20:2634–2645, 2014.

  101. Vesely, I. Heart valve tissue engineering. Circ. Res. 97:743–755, 2005.

    Article  CAS  PubMed  Google Scholar 

  102. Vesely, I., and D. Boughner. Analysis of the bending behavior of porcine xenograft leaflets and of natural aortic-valve material—bending stiffness, neutral axis and shear measurements. J. Biomech. 22:655, 1989.

    Article  CAS  PubMed  Google Scholar 

  103. Weber, B., P. E. Dijkman, J. Scherman, B. Sanders, M. Y. Emmert, J. Grünenfelder, R. Verbeek, M. Bracher, M. Black, T. Franz, J. Kortsmit, P. Modregger, S. Peter, M. Stampanoni, J. Robert, D. Kehl, M. van Doeselaar, M. Schweiger, C. E. Brokopp, T. Wälchli, V. Falk, P. Zilla, A. Driessen-Mol, F. P. T. Baaijens, and S. P. Hoerstrup. Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials 34:7269–7280, 2013.

    Article  PubMed  CAS  Google Scholar 

  104. Wheatley, D. J., G. M. Bernacca, M. M. Tolland, B. O’Connor, J. Fisher, and D. F. Williams. Hydrodynamic function of a biostable polyurethane flexible heart valve after six months in sheep. Int. J. Artif. Organs 24:95–101, 2001.

    CAS  PubMed  Google Scholar 

  105. Wheatley, D. J., L. Raco, G. M. Bernacca, I. Sim, P. R. Belcher, and J. S. Boyd. Polyurethane: material for the next generation of heart valve prostheses? Eur. J. Cardiothorac. Surg. 17:440–447, 2000.

    Article  CAS  PubMed  Google Scholar 

  106. Wisman, C. B., W. S. Pierce, J. H. Donachy, W. E. Pae, J. L. Myers, and G. A. Prophet. A polyurethane trileaflet cardiac-valve prosthesis—invitro and invivo studies. Trans. Am. Soc. Artif. Internal Organs 28:164–168, 1982.

    CAS  Google Scholar 

  107. Yacoub, M. H., and J. J. Takkenberg. Will heart valve tissue engineering change the world? Nat. Clin. Pract. Cardiovasc. Med. 2:60–61, 2005.

    Article  CAS  PubMed  Google Scholar 

  108. Yip, C. Y., J. H. Chen, R. Zhao, and C. A. Simmons. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 29:936–942, 2009.

    Article  CAS  PubMed  Google Scholar 

  109. Yip, C. Y., and C. A. Simmons. The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovasc. Pathol. 20:177–182, 2011.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This review article was prepared after the Mathematics Guiding Bioartificial Heart Valve Design meeting held at the Ohio State University, October 28–31, 2013. The authors would like to acknowledge the Mathematical Biosciences Institute and its grant from National Science Foundation (DMS 0931642) that facilitated the meeting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Kheradvar.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheradvar, A., Groves, E.M., Dasi, L.P. et al. Emerging Trends in Heart Valve Engineering: Part I. Solutions for Future. Ann Biomed Eng 43, 833–843 (2015). https://doi.org/10.1007/s10439-014-1209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1209-z

Keywords

Navigation