Skip to main content
Log in

Modeling and Simulation of Coupled Cell Proliferation and Regulation in Heterogeneous Tissue

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The primary objective of this work is to develop a computational framework that efficiently simulates the time-transient proliferation of cellular tissue, with heterogeneous microstructure, utilizing two strongly-coupled conservation laws:

  • Conservation Law 1: comprises (a) rate of change of cells, (b) cellular migration, (c) cellular proliferation controlled by a cell mitosis regulating chemical, (d) cell apoptosis and

  • Conservation Law 2: comprises (a) rate of change of the cell mitosis chemical regulator, (b) regulator diffusion, (c) regulator production by cells and (d) regulator decay.

Specifically, a straightforward approach is developed that researchers in the field can easily implement and use as a computationally-efficient tool to study such biological systems. Because multifield coupling is present, a recursive, staggered, temporally-adaptive, Finite Difference Time Domain scheme is developed to resolve the interacting fields. The time-step adaptation allows the numerical scheme to iteratively resolve the changing physical fields by reducing the time-steps during phases of the process when the system is undergoing changes on relatively small time-scales or enlarging the time-steps when the processes are relatively slow. The spatial discretization grids are uniform and dense, and the heterogeneous microstructure, is embedded into the spatial discretization. The regular grid allows one to generate a matrix-free iterative formulation which is amenable to rapid computation and minimal memory requirements, making it ideal for laptop computation. Numerical examples are provided to illustrate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. For the class of problems under consideration, due to the quadratic dependency on \(\Delta t\), \(p \approx 1\).

  2. Typically, \(K_d\) is chosen to be between five to ten iterations, although this is problem and analyst dependent.

  3. At the implementation level, since the exact solution is unknown, the following relative error term is used, \(\varpi ^{L+1,K} \mathop {=}\limits ^\mathrm{def}{\varvec{U}}^{L+1,K}-{\varvec{U}}^{L+1,K-1}\).

References

  1. Ambrosi, D., Ateshian, G. A., Arruda, E. M., Cowin, S. C., Dumais, J., Goriely, A., Holzapfel, G. A., Humphrey, J. D., Kemkemer, R., Kuhl, E., Olberding. J. E., Taber, L. A. and Garikipati, K. Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59:863–883, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Bailon-Plaza, A., and M. van der Meulen. Benefical effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. J. Biomech. 36(8):1069–1077, 2003.

  3. Bianco, M., G. Bilardi, F. Pesavento, G. Pucci, and B. A. Schrefler. A frontal solver tuned for fully coupled non-linear hygro-thermo-mechanical problems. Int. J. Numer. Methods Eng. 57:1801–1818, 2003.

    Article  Google Scholar 

  4. Carlier, A., L. Geris, K. Bentley, G. Carmeliet, P. Carmeliet, and H. Van Oosterwyck. (2012). MOSAIC: a multiscale model of osteogenesis and sprouting angiogenesis with lateral inhibition of endothelial cells. PLoS Comput. Biol. 8(10), 2012.

  5. Checa, S., P. J. Prendergast, and G. N. Duda. Inter-species investigation of the mechano-regulation of bone healing: comparison of secondary bone healing in sheep and rat. J. Biomech. 44:1237–1245, 2011.

    Article  PubMed  Google Scholar 

  6. Crosson, C. E., S. D. Klyce, and R. W. Beuerman. Epithelial wound closure in rabbit cornea wounds invest.Ophthalmol Vis. Sci. 27:464–473, 1986.

    CAS  Google Scholar 

  7. Franz, J. M., B. M. Dupuy, H. E. Kaufman, and R. W. Beuerman. The effects of collagen shields on epithelial wound healing in rabbits. Am. J. Ophthalmol. 108:524–528, 1989.

  8. Fung, Y. C. Elasticity of soft tissues in simple elongation. Am. J. Physiol. 28:1532–1544, 1967.

    Google Scholar 

  9. Fung, Y. C. Biorheology of soft tissues. Biorheology 10:139–155, 1973.

    CAS  PubMed  Google Scholar 

  10. Fung, Y. C. (1983). On the foundations of biomechanics. ASME J. Appl. Mech. 50, 1003–1009.

    Article  Google Scholar 

  11. Geris, L., K. Van damme, I. Naert, J. Van der Slotena, J. Duyck, and H. Van Oosterwyck. Application of mechanoregulatory models to simulate peri-implant tissue formation in an in vivo bone chamber. J. Biomech. 41:145–154.

    Article  PubMed  Google Scholar 

  12. Gomez-Benito, M. J., J. M. Garcia-Aznar, J. H. Kuiper, and M. Doblare. Influence of fracture gap size on the pattern of long bone healing: a computational study. J. Theor. Biol. 235:105–119, 2005.

    Article  CAS  PubMed  Google Scholar 

  13. Hashin, Z. Analysis of composite materials: a survey. ASME J. Appl. Mech. 50:481–505, 1983.

    Article  Google Scholar 

  14. Holzapfel, G. A. Biomechanics of soft tissue. The handbook of materials behavior models. Volume III, Multiphysics behaviors, Chap. 10, Composite Media, Biomaterials, edited by J. Lemaitre. Boston: Academic Press, pp. 1049–1063, 2001.

  15. Holzapfel, G. A., and R. W. Ogden. Biomechanical Modeling at the Molecular, Cellular and Tissue Levels. Springer-Verlag, 2009.

  16. Huet, C. Universal conditions for assimilation of a heterogeneous material to an effective medium. Mech. Res. Commun. 9 (3), 165–170, 1982.

    Article  Google Scholar 

  17. Huet, C. On the definition and experimental determination of effective constitutive equations for heterogeneous materials. Mech. Res. Commun. 11 (3), 195–200, 1984.

    Article  Google Scholar 

  18. Humphrey, J. D. Cardiovascular Solid Mechanics. Cells, Tissues, and Organs. New York: Springer-Verlag, 2002.

  19. Humphrey, J. D. Continuum biomechanics of soft biological tissues. Proc. R. Soc. 459(2029):3–46, 2003.

    Article  Google Scholar 

  20. Isaksson, H., C. van Donkelaar, and K. Ito. Sensitivity of tissue differentiation and bone healing predictions to tissue properties. J. Biomech. 26, 555–564, 2009.

    Article  Google Scholar 

  21. Jikov, V. V., S. M. Kozlov, and O. A. Olenik. Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, 1994.

  22. Kachanov, M. Elastic solids with many cracks and related problems. Advance Applied Mechanics, vol. 30. New York: Academic Press, 1993, p. 259.

  23. Kachanov, M., I. Tsukrov, and B. Shafiro. Effective moduli of solids with cavities of various shapes. Appl. Mech. Rev. 47:S151–S174, 1994.

    Article  Google Scholar 

  24. Kachanov, M., and I. Sevostianov. On the quantitative characterization of microstructures and effective properties. Int. J. Solids Struct. 42, 309–336, 2005.

    Article  Google Scholar 

  25. Klepach, D., L. C. Lee, J. Wenk, M. Ratcliffe, T. I. Zohdi, J. Navia, G. Kassab, E. Kuhl, and J. M. Guccione. Growth and remodeling of the left ventricle: a case study of myocardial infarction and surgical ventricular restoration. Mech. Res. Commun. 42:134–141, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lewis, R. W., B. A. Schrefler, and L. Simoni. Coupling versus uncoupling in soil consolidation. Int. J. Numer. Anal. Methods. Geomech 15:533–548.

    Article  Google Scholar 

  27. Lewis, R. W., and B. A. Schrefler. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. 2nd edn. Wiley Press, 1998.

  28. Lindquist, G. The healing of skin defects: an experimental study of the white rat. Acta Chir. Scand. 94:1–163, Supplement 107, 1946.

  29. Markov, K. Z. Elementary micromechanics of heterogeneous media. In: Heterogeneous Media: Micromechanics Modeling Methods and Simulations, edited by K. Z. Markov, and L. Preziozi. Boston: Birkhauser, 2000, pp. 1–162.

    Chapter  Google Scholar 

  30. Maxwell, J. C. On the dynamical theory of gases. Philos. Trans. Soc. Lond. 157:49, 1867.

    Article  Google Scholar 

  31. Maxwell, J. C. A Treatise on Electricity and Magnetism. 3rd. edn. Oxford: Clarendon Press, 1873.

    Google Scholar 

  32. Mura, T. Micromechanics of Defects in Solids, 2nd edn. Kluwer Academic Publishers, 1993.

  33. Murray, J. D. Mathematical Biology, 3rd edn. Springer Verlag, 2004.

  34. Nemat-Nasser, S., and M. Hori. Micromechanics: Overall Properties of Heterogeneous Solids. 2nd edn. Amsterdam: Elsevier, 1999.

    Google Scholar 

  35. Rachev, A., and K. Hayashi. Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Eng. 27:459–468, 1999.

    Article  CAS  PubMed  Google Scholar 

  36. Rayleigh, J. W. On the influence of obstacles arranged in rectangular order upon properties of a medium. Philos. Mag. 32:481–491, 1892.

    Article  Google Scholar 

  37. Schrefler, B. A. A partitioned solution procedure for geothermal reservoir analysis. Commun. Appl. Numer. Methods. 1:53–56, 1985.

    Article  Google Scholar 

  38. Sevostianov, I., L. Gorbatikh, and M. Kachanov. Recovery of information of porous/microcracked materials from the effective elastic/conductive properties. Mater. Sci. Eng. A. 318:1–14, 2001.

    Article  Google Scholar 

  39. Sevostianov, I., and M. Kachanov. Connections between elastic and conductive properties of heterogeneous materials. Adv. Appl. Mech. 42:69–253, 2008.

    Article  Google Scholar 

  40. Sherratt, J. A., and J. D. Murray. Models of epiderma wound healing. Proc. R. Soc. Lond. B. 241:29–36, 1990.

    Article  CAS  Google Scholar 

  41. Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties. New York: Springer-Verlag, 2002.

  42. Turska, E., and B. A. Schrefler. On Consistency, Stability and Convergence of Staggered Solution Procedures. Rend. Mat. acc. Rome: Lincei, S. 9, v. 5, pp. 265–271.

  43. Van den Brenk, H. A. S Studies in restorative growth processes in mammalian wound healing. Br. J. Surg. 43:525–550, 1956.

    Article  Google Scholar 

  44. Wang, X., and B. A. Schrefler. A multifrontal parallel algorithm for coupled thermo-hydro-mechanical analysis of deforming porous media. Int. J. Numer. Methods. Eng. 43:1069–1083, 1998.

    Article  Google Scholar 

  45. Zienkiewicz, O. C. Coupled problems & their numerical solution. In: Numerical Methods in Coupled Systems, edited by R. W. Lewis, P. Bettes, and E. Hinton. Chichester: Wiley, pp. 35–58, 1984.

  46. Zienkiewicz, O. C., D. K. Paul, and A. H. C. Chan. Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int. J. Numer. Methods Eng. 26:1039–1055, 1988.

    Article  Google Scholar 

  47. Zieske, J. D., S. C. Higashij, S. J. Spurmic, and I. K. Gipson. Biosynthetic response of the rabbit cornea to a keratectomy wound. Invest. Ophthalmol. Vis. Sci. 28:1668–1677, 1987.

    CAS  PubMed  Google Scholar 

  48. Zohdi, T. I. An adaptive-recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids. Int. J. Numer. Methods Eng. 53:1511–1532, 2002.

    Article  Google Scholar 

  49. Zohdi, T. I. Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids. Comput. Methods Appl. Mech. Eng. 193/6-8:679–699, 2004.

    Article  Google Scholar 

  50. Zohdi, T. I. (2010). Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput. Methods Appl. Mech. Eng. 199:79–101, 2010.

    Article  Google Scholar 

  51. Zohdi, T. I., and P. Wriggers. Introduction to Computational Micromechanics. Springer-Verlag, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Zohdi.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohdi, T.I. Modeling and Simulation of Coupled Cell Proliferation and Regulation in Heterogeneous Tissue. Ann Biomed Eng 43, 1666–1679 (2015). https://doi.org/10.1007/s10439-014-1194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1194-2

Keywords

Navigation