Skip to main content
Log in

Characterization of Stroke- and Aging-Related Changes in the Complexity of EMG Signals During Tracking Tasks

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To explore the stroke- and aging-induced neurological changes in paretic muscles from an entropy point of view, fuzzy approximate entropy (fApEn) was utilized to represent the complexity of EMG signals in elbow-tracking tasks. In the experiment, 11 patients after stroke and 20 healthy control subjects (10 young and 10 age-matched adults) were recruited and asked to perform elbow sinusoidal trajectory tracking tasks. During the tests, the elbow angle and electromyographic (EMG) signals of the biceps brachii and triceps brachii were recorded simultaneously. The results showed significant differences in fApEn values of both biceps and triceps EMG among four groups at six velocities (p < 0.01), with fApEn values in the following order: affected sides of stroke patients < unaffected sides of stroke patients < age-matched controls < young controls. A possible mechanism underlying the smaller fApEn values in the affected sides in comparison with aged-matched controls and in the aged individuals in comparison with young controls might be the reduction in the number and firing rate of active motor units. This method and index provide evidence of neurological changes after stroke and aging by complexity analysis of the surface EMG signals. Further studies are needed to validate and facilitate the application in clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Akataki, K., K. Mita, M. Watakabe, and K. Itoh. Mechanomyogram and force relationship during voluntary isometric ramp contractions of the biceps brachii muscle. Eur. J. Appl. Physiol. 84:19–25, 2001.

    Article  CAS  PubMed  Google Scholar 

  2. Brown, W. F., and R. Snow. Denervation in hemiplegic muscles. Stroke 21:1700–1704, 1990.

    Article  CAS  PubMed  Google Scholar 

  3. Caldirola, D., L. Bellodi, A. Caumo, G. Migliarese, and G. Perna. Approximate entropy of respiratory patterns in panic disorder. Am. J. Psychiatry 161:79–87, 2004.

    Article  PubMed  Google Scholar 

  4. Canning, C. G., L. Ada, and N. J. O’Dwyer. Abnormal muscle activation characteristics associated with loss of dexterity after stroke. J. Neurol. Sci. 176:45–56, 2000.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, W., Z. Wang, H. Xie, and W. Yu. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 15:266–272, 2007.

    Article  PubMed  Google Scholar 

  6. Coderre, A. M., A. A. Zeid, S. P. Dukelow, M. J. Demmer, K. D. Moore, M. J. Demers, H. Bretzke, T. M. Herter, J. I. Glasgow, and K. E. Norman. Assessment of upper-limb sensorimotor function of subacute stroke patients using visually guided reaching. Neurorehabil. Neural Repair 24:528–541, 2010.

    Article  PubMed  Google Scholar 

  7. Costa, M., and J. Healey. Multiscale entropy analysis of complex heart rate dynamics: discrimination of age and heart failure effects. Comput. Cardiol. 30:705–708, 2003.

    Google Scholar 

  8. Cram, J. F., and G. S. Kasman. Introduction to Surface Electromyography. Gaithersburg: Aspen, pp. 316–321, 1998.

    Google Scholar 

  9. Desrosiers, J., D. Bourbonnais, G. Bravo, P.-M. Roy, and M. Guay. Performance of the ‘unaffected’upper extremity of elderly stroke patients. Stroke 27:1564–1570, 1996.

    Article  CAS  PubMed  Google Scholar 

  10. Duchene, J., and J. Y. Hogrel. A model of EMG generation. IEEE Trans. Biomed. Eng. 47:192–201, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. Farina, D., L. Arendt-Nielsen, R. Merletti, and T. Graven-Nielsen. Effect of experimental muscle pain on motor unit firing rate and conduction velocity. J. Neurophysiol. 91:1250–1259, 2004.

    Article  PubMed  Google Scholar 

  12. Gabriel, D. A., and G. Kamen. Experimental and modeling investigation of spectral compression of biceps brachii SEMG activity with increasing force levels. J. Electromyogr. Kinesiol. 19:437–448, 2009.

    Article  PubMed  Google Scholar 

  13. Gemperline, J. J., S. Allen, D. Walk, and W. Z. Rymer. Characteristics of motor unit discharge in subjects with hemiparesis. Muscle Nerve 18:1101–1114, 1995.

    Article  CAS  PubMed  Google Scholar 

  14. Gitter, J. A., and M. J. Czerniecki. Fractal analysis of the electromyographic interference pattern. J. Neurosci. Methods 58:103–108, 1995.

    Article  CAS  PubMed  Google Scholar 

  15. Glendinning, D. S., and R. M. Enoka. Motor unit behavior in Parkinson’s disease. Phys. Ther. 74:61–70, 1994.

    CAS  PubMed  Google Scholar 

  16. Hong, S. L., and K. M. Newell. Motor entropy in response to task demands and environmental information. Chaos 18:033131, 2008.

    Article  PubMed  Google Scholar 

  17. Hu, X., C. Miller, P. Vespa, and M. Bergsneider. Adaptive computation of approximate entropy and its application in integrative analysis of irregularity of heart rate variability and intracranial pressure signals. Med. Eng. Phys. 30:631–639, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Huo, Y. Current status and development of percutaneous coronary intervention in China. J. Zhejiang Univ. Sci. B 11:631–633, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Jennifer, M. Y., H. Nathaniel, K. S. Kendra, P. K. Jeffrey, M. Denise, and S. Nicholas. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 41:349–365, 2013.

    Article  Google Scholar 

  20. Kallenberg, L. A., and H. J. Hermens. Motor unit properties of biceps brachii in chronic stroke patients assessed with high-density surface EMG. Muscle Nerve 39:177–185, 2009.

    Article  PubMed  Google Scholar 

  21. Kojović, J., N. Miljković, M. M. Janković, and D. B. Popović. Recovery of motor function after stroke: a polymyography-based analysis. J. Neurosci. Methods 194:321–328, 2011.

    Article  PubMed  Google Scholar 

  22. Li, X., W. Z. Rymer, and P. Zhou. A simulation-based analysis of motor unit number index (MUNIX) technique using motoneuron pool and surface electromyogram models. IEEE Trans. Neural Syst. Rehabil. Eng. 20:297–304, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Li, X., Y. C. Wang, N. L. Suresh, W. Rymer, and P. Zhou. Motor unit number reductions in paretic muscles of stroke survivors. IEEE Trans. Inf. Technol. Biomed. 15:505–512, 2011.

    Article  PubMed  Google Scholar 

  24. Lodha, N., S. K. Naik, S. A. Coombes, and J. H. Cauraugh. Force control and degree of motor impairments in chronic stroke. Clin. Neurophysiol. 121:1952–1961, 2010.

    Article  PubMed  Google Scholar 

  25. Lukacs, M., L. Vecsei, and S. Beniczky. Large motor units are selectively affected following a stroke. Clin. Neurophysiol. 119:2555–2558, 2008.

    Article  CAS  PubMed  Google Scholar 

  26. Lum, P., D. Reinkensmeyer, R. Mahoney, W. Z. Rymer, and C. Burgar. Robotic devices for movement therapy after stroke: current status and challenges to clinical acceptance. Top. Stroke Rehabil. 8:40–53, 2002.

    Article  PubMed  Google Scholar 

  27. McNeil, C. J., T. J. Doherty, D. W. Stashuk, and C. L. Rice. Motor unit number estimates in the tibialis anterior muscle of young, old, and very old men. Muscle Nerve 31:461–467, 2005.

    Article  PubMed  Google Scholar 

  28. Mukul, M., K. Panagiotis, S. Ka-Chun, B. F. Pierre, and S. Nicholas. Stroke survivors control the temporal structure of variability during reaching in dynamic environments. Ann. Biomed. Eng. 41:366–376, 2013.

    Article  Google Scholar 

  29. Padmanabhan P. and S. Puthusserypady. Nonlinear analysis of EMG signals—a chaotic approach. In: 26th Annual International Conference of the IEEE EMBS. 2004, p. 608–611.

  30. Pincus, S. M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88:2297–2301, 1991.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Pincus, S. M., and A. L. Goldberger. Physiological time-series analysis: what does regularity quantify? Am. J. Physiol. Heart Circ. Physiol. 266:H1643–H1656, 1994.

    CAS  Google Scholar 

  32. Richman, J. S., and J. R. Moorman. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278:H2039–H2049, 2000.

    CAS  PubMed  Google Scholar 

  33. Rohrer, B., S. Fasoli, H. I. Krebs, R. Hughes, B. Volpe, W. R. Frontera, J. Stein, and N. Hogan. Movement smoothness changes during stroke recovery. J. Neurosci. 22:8297–8304, 2002.

    CAS  PubMed  Google Scholar 

  34. Roos, M. R., C. L. Rice, and A. A. Vandervoort. Age-related changes in motor unit function. Muscle Nerve 20:679–690, 1997.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenfalck, A., and S. Andreassen. Impaired regulation of force and firing pattern of single motor units in patients with spasticity. J. Neurol. Neurosurg. Psychiatry 43:907–916, 1980.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sethi, A., S. Davis, T. McGuirk, T. S. Patterson, and L. G. Richards. Effect of intense functional task training upon temporal structure of variability of upper extremity post stroke. J. Hand Ther. 26:132–138, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Song, R., K. Y. Tong, and X. L. Hu. Evaluation of velocity-dependent performance of the spastic elbow during voluntary movements. Arch. Phys. Med. Rehabil. 89:1140–1145, 2008.

    Article  PubMed  Google Scholar 

  38. Soylu, A. R., and P. Arpinar-Avsar. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction. J. Electromyogr. Kinesiol. 20:773–776, 2010.

    Article  PubMed  Google Scholar 

  39. Sun, R., R. Song, and K. Y. Tong. Complexity analysis of EMG signals for patients after stroke during robot-aided rehabilitation training using fuzzy approximate entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 22:1013–1019, 2014.

    Article  PubMed  Google Scholar 

  40. Viitasalo, J. T., and P. V. Komi. Effects of fatigue on isometric force-and relaxation-time characteristics in human muscle. Acta Physiol. Scand. 111:87–95, 1981.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, W., A. D. Stefano, and R. Allen. A simulation model of the surface EMG signal for analysis of muscle activity during the gait cycle. Comput. Biol. Med. 36:601–618, 2006.

    Article  CAS  PubMed  Google Scholar 

  42. Webber, C. L., M. A. Schmidt, and J. M. Walsh. Influence of isometric loading on biceps EMG dynamics as assessed by linear and nonlinear tools. J. Appl. Physiol. 78:814–822, 1995.

    PubMed  Google Scholar 

  43. Xie, H. B., W. T. Chen, W. X. He, and H. Liu. Complexity analysis of the biomedical signal using fuzzy entropy measurement. Appl. Soft Comput. 11:2871–2879, 2011.

    Article  Google Scholar 

  44. Xie, H. B., J. Y. Guo, and Y. P. Zheng. Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals. Ann. Biomed. Eng. 38:1483–1496, 2010.

    Article  PubMed  Google Scholar 

  45. Xie, J., E. Q. Wu, Z. J. Zheng, J. B. Croft, K. J. Greenlund, G. A. Mensah, and D. R. Labarthe. Impact of stroke on health-related quality of life in the noninstitutionalized population in the United States. Stroke 37:2567–2572, 2006.

    Article  PubMed  Google Scholar 

  46. Xiong, G., L. Zhang, H. Liu, H. Zou, and W. Guo. A comparative study on ApEn, SampEn and their fuzzy counterparts in a multiscale framework for feature extraction. J. Zhejiang Univ. Sci. A 11:270–279, 2010.

    Article  Google Scholar 

  47. Zadeh, L. A. Fuzzy sets. Inf. Control 8:338–353, 1965.

    Article  Google Scholar 

  48. Zhou, P., P. E. Barkhaus, X. Zhang, and W. Z. Rymer. Characterizing the complexity of spontaneous motor unit patterns of amyotrophic lateral sclerosis using approximate entropy. J. Neural Eng. 8:066010, 2011.

    Article  PubMed  Google Scholar 

  49. Zhou, P., N. L. Suresh, and W. Z. Rymer. Model based sensitivity analysis of EMG–force relation with respect to motor unit properties: applications to muscle paresis in stroke. Ann. Biomed. Eng. 35:1521–1531, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (Grant No. 61273359) and the Guangdong Natural Science Foundation (Grant No. S2012010010350).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Song.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, D., Sun, R., Tong, Ky. et al. Characterization of Stroke- and Aging-Related Changes in the Complexity of EMG Signals During Tracking Tasks. Ann Biomed Eng 43, 990–1002 (2015). https://doi.org/10.1007/s10439-014-1150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1150-1

Keywords

Navigation