Skip to main content
Log in

Amniotic Fluid-Derived Stem Cells Demonstrated Cardiogenic Potential in Indirect Co-culture with Human Cardiac Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Amniotic fluid-derived stem cells (AFSC) have been shown to be broadly multipotent and non-tumorogenic. Previous studies of direct mixing of AFSC and neonatal rat ventricle myocytes indicated evidence of AFSC cardiogenesis. In this study, we examined human AFSC cardiogenic potential in indirect co-culture with human cardiac cells in conditions that eliminated the possibility of cell fusion. Human AFSC in contact with human cardiac cells showed expression of cardiac troponin T (cTnT) in immunohistochemistry, and no evidence of cell fusion was found through fluorescent in situ hybridization. When indirectly co-cultured with cardiac cells, human AFSC in contact with cardiac cells across a thin porous membrane showed a statistically significant increase in cTnT expression compared to non-contact conditions but lacked upregulation of calcium modulating proteins and did not have functional or morphological characteristics of mature cardiomyocytes. This suggests that contact is a necessary but not sufficient condition for AFSC cardiac differentiation in co-culture with cardiac cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

AFSC:

Amniotic fluid derived stem cells

CHD:

Congenital heart defects

RVOT:

Right ventricular out flow tract

CM:

Cardiomyocytes

NRVM:

Neonatal rat ventricular myocytes

References

  1. Acquistapace, A., T. Bru, P.-F. Lesault, F. Figeac, A. E. Coudert, O. le Coz, C. Christov, X. Baudin, F. Auber, R. Yiou, J.-L. Dubois-Randé, and A.-M. Rodriguez. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells (Dayton, Ohio) 29:812–824, 2011.

  2. Benavides, O., and J. Petsche. Evaluation of endothelial cells differentiated from amniotic fluid-derived stem cells. Tissue Eng. Part A 18:1123–1131, 2012.

  3. Bistola, V., M. Nikolopoulou, A. Derventzi, A. Kataki, N. Sfyras, N. Nikou, M. Toutouza, P. Toutouzas, C. Stefanadis, and M. M. Konstadoulakis. Long-term primary cultures of human adult atrial cardiac myocytes: cell viability, structural properties and BNP secretion in vitro. Int. J. Cardiol. 131:113–122, 2008.

    Article  PubMed  Google Scholar 

  4. Chiavegato, A., S. Bollini, M. Pozzobon, A. Callegari, L. Gasparotto, J. Taiani, M. Piccoli, E. Lenzini, G. Gerosa, I. Vendramin, E. Cozzi, A. Angelini, L. Iop, G. F. Zanon, A. Atala, P. De Coppi, and S. Sartore. Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J. Mol. Cell. Cardiol. 42:746–759, 2007.

    Article  CAS  PubMed  Google Scholar 

  5. Connell, J. P., E. Augustini, K. J. Moise, A. Johnson, and J. G. Jacot. Formation of functional gap junctions in amniotic fluid-derived stem cells induced by transmembrane co-culture with neonatal rat cardiomyocytes. J. Cell Mol. Med. 17:774–781, 2013.

    Article  CAS  PubMed  Google Scholar 

  6. De Coppi, P., G. Bartsch, M. M. Siddiqui, T. Xu, C. C. Santos, L. Perin, G. Mostoslavsky, A. C. Serre, E. Y. Snyder, J. J. Yoo, M. E. Furth, S. Soker, and A. Atala. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25:100–106, 2007.

    Article  PubMed  Google Scholar 

  7. Du, Z. D., Z. M. Hijazi, C. S. Kleinman, N. H. Silverman, and K. Larntz. Comparison between transcatheter and surgical closure of secundum atrial septal defect in children and adults: results of a multicenter nonrandomized trial. J. Am. Coll. Cardiol. 39:1836–1844, 2002.

    Article  PubMed  Google Scholar 

  8. French, K. M., A. V. Boopathy, J. A. DeQuach, L. Chingozha, H. Lu, K. L. Christman, and M. E. Davis. A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell behavior in vitro. Acta Biomater. 8:4357–4364, 2012.

  9. Guan, X., and D. Delo. In vitro cardiomyogenic potential of human amniotic fluid stem cells. J. Tissue Eng. Regen. Med. 5:220–228, 2011. doi:10.1002/term.

  10. Hamilton, B. E., D. L. Hoyert, J. A. Martin, D. M. Strobino, and B. Guyer. Annual summary of vital statistics: 2010–2011. Pediatrics 131:548–558, 2013.

  11. Harris, L., and S. Balaji. Arrhythmias in the adult with congenital heart disease. In: Diagnosis and Management of Adult Congenital Heart Disease, edited by M. Gatzoulis, G. Webb, and P. E. Daubeney. Philadelphia: Elsevier Health Sciences, 2003, pp. 105–113.

    Google Scholar 

  12. Heallen, T., M. Zhang, J. Wang, M. Bonilla-Claudio, E. Klysik, R. L. Johnson, and J. F. Martin. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science (New York, N.Y.) 332:458–461, 2011.

    Article  CAS  Google Scholar 

  13. Jacot, J., and J. Wong. Endothelial injury induces vascular smooth muscle cell proliferation in highly localized regions of a direct contact co-culture system. Cell Biochem. Biophys. 52:37–46, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kehat, I., and D. Kenyagin-Karsenti. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108:363–364, 2001.

  15. Mishra, R., K. Vijayan, E. J. Colletti, D. A. Harrington, T. S. Matthiesen, D. Simpson, S. K. Goh, B. L. Walker, G. Almeida-Porada, D. Wang, C. L. Backer, S. C. Dudley, L. E. Wold, and S. Kaushal. Characterization and functionality of cardiac progenitor cells in congenital heart patients. Circulation 123:364–73, 2011.

  16. Moretti, A., L. Caron, A. Nakano, J. T. Lam, A. Bernshausen, Y. Chen, Y. Qyang, L. Bu, M. Sasaki, S. Martin-Puig, Y. Sun, S. M. Evans, K.-L. Laugwitz, and K. R. Chien. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165, 2006.

    Article  CAS  PubMed  Google Scholar 

  17. Murphy, S., J. Xu, and K. Kochanek. Deaths: final data for 2010. National Vital Statistics Reports 60, 2013.

  18. Naqvi, N., M. Li, J. W. Calvert, T. Tejada, J. P. Lambert, J. Wu, S. H. Kesteven, S. R. Holman, T. Matsuda, J. D. Lovelock, W. W. Howard, S. E. Iismaa, A. Y. Chan, B. H. Crawford, M. B. Wagner, D. I. K. Martin, D. J. Lefer, R. M. Graham, and A. Husain. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell 157:795–807, 2014.

    Article  CAS  PubMed  Google Scholar 

  19. Nygren, J. M., S. Jovinge, M. Breitbach, P. Säwén, W. Röll, J. Hescheler, J. Taneera, B. K. Fleischmann, and S. E. W. Jacobsen. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10:494–501, 2004.

    Article  CAS  PubMed  Google Scholar 

  20. Oh, H., S. B. Bradfute, T. D. Gallardo, T. Nakamura, V. Gaussin, Y. Mishina, J. Pocius, L. H. Michael, R. R. Behringer, D. J. Garry, M. L. Entman, and M. D. Schneider. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. U.S.A. 100:12313–12318, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Olson, E. N., and D. Srivastava. Molecular pathways controlling heart development. Science 272:671–676, 1996.

    Article  CAS  PubMed  Google Scholar 

  22. Pedrotty, D. M., R. Y. Klinger, R. D. Kirkton, and N. Bursac. Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes. Cardiovasc. Res. 83:688–697, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Reller, M., and M. Strickland. Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J. Pediatrics 153:807–813, 2008.

  24. Schuldiner, M., O. Yanuka, J. Itskovitz-Eldor, D. A. Melton, and N. Benvenisty. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. U.S.A. 97:11307–12, 2000.

  25. Steeds, R. P., and D. Oakley. Predicting late sudden death from ventricular arrhythmia in adults following surgical repair of tetralogy of Fallot. QJM 97:7–13, 2003.

    Article  Google Scholar 

  26. Tsai, M.-S., J.-L. Lee, Y.-J. Chang, and S.-M. Hwang. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum. Reprod. (Oxford, England) 19:1450–1456, 2004.

    Article  Google Scholar 

  27. Wozniak, M. A., and C. S. Chen. Mechanotransduction in development: a growing role for contractility. Nature reviews. Mol. Cell Biol. 10:34–43, 2009.

  28. Xin, M., Y. Kim, L. B. Sutherland, M. Murakami, X. Qi, J. McAnally, E. R. Porrello, A. I. Mahmoud, W. Tan, J. M. Shelton, J. A. Richardson, H. A. Sadek, R. Bassel-Duby, and E. N. Olson. Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl Acad. Sci. U.S.A. 110:13839–13844, 2013.

  29. Zhang, P., J. Baxter, K. Vinod, T. N. Tulenko, and P. J. Di Muzio. Endothelial differentiation of amniotic fluid-derived stem cells: synergism of biochemical and shear force stimuli. Stem Cells Dev. 18:1299–1308, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Zhou, B., Q. Ma, S. Rajagopal, S. M. Wu, I. Domian, J. Rivera-Feliciano, D. Jiang, A. von Gise, S. Ikeda, K. R. Chien, and W. T. Pu. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–113, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zimmermann, W.-H., I. Melnychenko, G. Wasmeier, M. Didié, H. Naito, U. Nixdorff, A. Hess, L. Budinsky, K. Brune, B. Michaelis, S. Dhein, A. Schwoerer, H. Ehmke, and T. Eschenhagen. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12:452–458, 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by the American Heart Association (Beginning Grant-in-Aid to JGJ.) Amniotic fluid samples were provided by the Fetal Center at Texas Children’s Hospital Pavilion for Women. Pediatric cardiac tissue samples were provided by Division of Congenital Heart Surgery at Texas Children’s Hospital through the Heart Center Biorepository.

Disclosures

There are no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey G. Jacot.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Connell, J.P., Wadhwa, L. et al. Amniotic Fluid-Derived Stem Cells Demonstrated Cardiogenic Potential in Indirect Co-culture with Human Cardiac Cells. Ann Biomed Eng 42, 2490–2500 (2014). https://doi.org/10.1007/s10439-014-1114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1114-5

Keywords

Navigation