Skip to main content
Log in

Geometric and Flow Features of Type B Aortic Dissection: Initial Findings and Comparison of Medically Treated and Stented Cases

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Uncomplicated acute type B aortic dissections are usually treated medically, but they can become acutely complicated by rapid expansion, rupture and malperfusion syndromes and in the longer term by chronic dilatation and aortic aneurysm formation. The objective of this study is to use computational fluid dynamics reconstructions of type B aortic dissections to compare geometric and haemodynamic factors between the cases selected for medical treatment and the cases selected for thoracic endovascular aortic repair (TEVAR), and to examine whether any of these factors are associated with the outcome of the medically treated group. This study includes eight type B dissection cases, with four in each group. Aortic flow analyses were carried out based on patient-specific anatomy at initial presentation before treatment. Comparisons between the two groups show that the false lumen to true lumen volume ratio is considerably higher in patients selected for TEVAR. Results from the four medically treated cases indicate that the size of the primary entry tear is the key determinant of the false lumen flow rate, which may influence the long-term outcome of medically treated patients. Potential relations between flow related parameters based on initial anatomy and subsequent anatomical changes in the medically treatment group were examined. Our initial findings based on the limited cases are that high relative residence time is a strong predictor of subsequent false lumen thrombosis, whereas pressure difference between the true and false lumen as well as the location of the largest pressure difference may be associated with the likelihood of subsequent aortic expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Barth, T. J. and D. C. Jesperson. The design and application of upwind schemes on unstructured meshes. AIAA Paper. 89-0366, 1989.

  2. Cheng, Z., F. P. Tan, C. V. Riga, C. D. Bicknell, M. S. Hamady, R. G. Gibbs, N. B. Wood, and X. Y. Xu. Analysis of flow patterns in a patient-specific aortic dissection model. J. Biomech. Eng. 132(5):051007, 2010.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng, Z., C. V. Riga, J. Chan, M. S. Hamady, N. B. Wood, N. J. W. Cheshire, X. Y. Xu, and R. G. J. Gibbs. Computational simulation of the aorta in acute Type B dissection: initial findings and potential applicability. J. Vasc. Surg. 57:35S–43S, 2013.

    Article  PubMed  Google Scholar 

  4. Cheng, Z. C. Juli, N. B. Wood, R. G. J Gibbs, X. Y. Xu. Predicting flow in aortic dissection: comparison of computational model with PC-MRI velocity measurements. Med. Eng. Phys. 2014. doi:10.1016/j.medengphy.2014.07.006.

  5. Dailey, P. O., H. Trueblood, and E. B. Stinson. Management of acute aortic dissection. Ann. Thorac. Surg. 10:237–246, 1970.

    Article  Google Scholar 

  6. Eggebrecht, H., U. Herold, O. Kuhnt, A. Schmermund, T. Bartel, S. Martini, A. Lind, C. K. Naber, P. Kienbaum, H. Kuhl, J. Peters, H. Jakob, R. Erbel, and D. Baumgart. Endovascular stent-graft treatment of aortic dissection: determinants of post-interventional outcome. Eur. Heart. J. 26:489–497, 2005.

    Article  PubMed  Google Scholar 

  7. Ferziger, J. H., and M. Peric. Computational Methods for Fluid Dynamics. Berlin: Springer, 1999.

    Book  Google Scholar 

  8. Hagan, P. G., C. A. Nienaber, E. M. Isselbacher, D. Bruckman, D. J. Karavite, P. L. Russman, A. Evangelista, R. Fattori, T. Suzuki, J. K. Oh, A. G. Moore, J. F. Malouf, L. A. Pape, C. Gaca, U. Sechtem, S. Lenferink, H. J. Deutsch, H. Diedrichs, J. Marcosy Robles, A. Llovet, D. Gilon, S. K. Das, W. F. Armstrong, G. M. Deeb, and K. A. Eagle. The international registry of acute aortic dissection (IRAD): new insights into an old disease. JAMA J. Am. Med. Assoc. 283:897–903, 2000.

    Article  CAS  Google Scholar 

  9. Himburg, H. A., D. M. Grzybowski, A. Hazel, J. A. LaMack, X. M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286(5):H1916–H1922, 2004.

    Article  CAS  PubMed  Google Scholar 

  10. Hutchinson, B. R., and G. D. Raithby. A multigrid method based on the additive correction strategy. Numer. Heat Transf. 9:511–537, 1986.

    Article  Google Scholar 

  11. Karmonik, C., S. Partovi, M. Müller-Eschner, J. Bismuth, M. G. Davies, D. J. Shah, M. Loebe, D. Böckler, A. B. Lumsden, and H. von Tengg-Kobligk. Longitudinal computational fluid dynamics study of aneurysmal dilatation in a chronic DeBakey type III aortic dissection. J. Vasc. Surg. 56:260–2633, 2012.

    Article  PubMed  Google Scholar 

  12. Langtry, R., and F. Menter. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 47(12):2894–2906, 2009.

    Article  Google Scholar 

  13. Marui, A., T. Mochizuki, N. Mitsui, T. Koyama, F. Kimura, and M. Horibe. Toward the best treatment for uncomplicated patients with type B acute aortic dissection. Circulation 100(suppl. 2):II275–280, 1999.

    CAS  PubMed  Google Scholar 

  14. Menter, F. R., R. Langtry, and S. Völker. Transition modelling for general purpose CFD codes. Flow Turbul. Combust. 77:277–303, 2006.

    Article  Google Scholar 

  15. Nienaber, C., H. Rousseau, H. Eggebrect, S. Kische, R. Fattori, T. C. Rehders, G. Kundt, D. Scheinert, M. Czerny, T. Kleinfeldt, B. Zipfel, L. Labrousse, and H. Ince. Randomized comparison of strategies for Type B aortic dissection; the Investigation of STEnt Grafts in Aortic Dissection (INSTEAD) trial. Circulation 120:2519–2528, 2009.

    Article  PubMed  Google Scholar 

  16. Resnick, N., S. Einav, L. Chen-Konak, M. Zilberman, H. Yahav, and A. Shay-Salit. Hemodynamic forces as a stimulus for arteriogenesis. Endothelium 10(4–5):197–206, 2003.

    Article  PubMed  Google Scholar 

  17. Shirali, A. S., M. S. Bischoff, H. M. Lin, I. Oyfe, R. Lookstein, R. B. Griepp, and G. D. Luozzo. Predicting the risk for acute type B aortic dissection in hypertensive patients using anatomic variables. JACC Cardiovasc. Imaging 6(3):349–357, 2013.

    Article  PubMed  Google Scholar 

  18. Slater, E. E., and R. W. DeSanctis. The clinical recognition of dissecting aortic aneurysm. Am. J. Med. 60(5):625–633, 1976.

    Article  CAS  PubMed  Google Scholar 

  19. Spittell, P. C., J. A. Spittell, Jr., J. W. Joyce, A. J. Tajik, W. D. Edwards, H. V. Schaff, and A. W. Stanson. Clinical features and differential diagnosis of aortic dissection: experience with 236 Cases (1980 through 1990). Mayo. Clin. Proc. 68(7):642–651, 1993.

    Article  CAS  PubMed  Google Scholar 

  20. Sueyoshi, E., I. Sakamoto, K. Hayashi, T. Yamagichi, and T. Imada. Growth rate of aortic diameter in patients with type B aortic dissection during the chronic phase. Circulation 110(Suppl 1):II256–261, 2004.

    PubMed  Google Scholar 

  21. Tan, F. P. P., R. Torii, A. Borghi, R. H. Mohiaddin, N. B. Wood, and X. Y. Xu. Fluid-structure interaction analysis of wall stress and flow patterns in a thoracic aortic aneurysm. Int. J. Appl. Mech. 1(1):179–199, 2009.

    Article  Google Scholar 

  22. Tan, F. P. P., X. Y. Xu, R. Torii, N. B. Wood, N. Delahunty, M. Mullen, N. Moat, and R. Mohiaddin. Comparison of aortic flow patterns before and after transcatheter aortic valve implantation. Cardiovasc. Eng. Technol. 3(1):123–135, 2011.

    Article  Google Scholar 

  23. Tozer, E. C., and T. E. Carew. Residence time of low-density lipoprotein in the normal and atherosclerotic rabbit aorta. Circ. Res. 80(2):208–218, 1997.

    Article  CAS  PubMed  Google Scholar 

  24. Tse, K. M., P. Chiu, H. P. Lee, and P. Ho. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J. Biomech. 44:827–836, 2011.

    Article  PubMed  Google Scholar 

  25. Wilcox, D. C. Turbulence Modelling for CFD (3rd ed.). La Canada: DCW Industries, 2006.

    Google Scholar 

  26. Zamir, M., P. Sinclair, and T. H. Wonnacott. Relation between diameter and flow in major branches of the arch of the aorta. J. Biomech. 25(11):1303–1310, 1992.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Y. Xu.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Wood, N.B., Gibbs, R.G.J. et al. Geometric and Flow Features of Type B Aortic Dissection: Initial Findings and Comparison of Medically Treated and Stented Cases. Ann Biomed Eng 43, 177–189 (2015). https://doi.org/10.1007/s10439-014-1075-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1075-8

Keywords

Navigation