Skip to main content
Log in

FEA Study on the Stress Distributions in the Polymer Coatings of Cardiovascular Drug-Eluting Stent Medical Devices

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cardiovascular drug-eluting stents (DES) are widely applied medical products to treat diseased narrowed arteries. Despite their wide application, there still are many clinical adverse effects associated with DES implantation. One of the major issues is that the coatings comprised of drug and polymer phases are often delaminated during the deployment of the stent, which can lead to more serious clinical complications. In the present work, we conducted a 3D finite-element analysis (FEA) computational study to quantitatively estimate the stress distributions in the coating components of DES devices. To adequately represent the skeleton design of modern DES products, we adopted the strut geometry of a SYNERGY stent along with a full coating of poly(lactic-co-glycolic) acid. The FEA computation results clearly indicate that the curved regions (i.e., kink) are subject to much higher stress accumulation in the coating. In addition, it was found that the local shear and normal stress distribution profiles in the polymer coatings are different from those based on von-Mises stresses near the kink area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Davies, M., A. Brindley, X. Chen, M. Marlow, S. W. Doughty, I. Shrubb, and C. J. Roberts. Characterization of drug particle surface energetics and young’s modulus by atomic force microscopy and inverse gas chromatography. Pharm. Res. 22:1158–1166, 2005.

    Article  CAS  PubMed  Google Scholar 

  2. Garg, S., and P. W. Serruys. Coronary stents: looking forward. J. Am. Coll. Cardiol. 56:S43–S78, 2011.

    Article  Google Scholar 

  3. Hall, G. J., and E. P. Kasper. Comparison of element technologies for modeling stent expansion. J. Biomech. Eng. 128:751–756, 2006.

    Article  PubMed  Google Scholar 

  4. Hopkins, C. G., P. E. McHugh, and J. P. McGarry. Computational investigation of the delamination of polymer coatings during stent deployment. Ann. Biomed. Eng. 38:2263–2273, 2010.

    Article  CAS  PubMed  Google Scholar 

  5. Hopkins, C., P. E. McHugh, N. P. O’Dowd, Y. Rochev, and J. P. McGarry. A combined computational and experimental methodology to determine the adhesion properties of stent polymer coatings. Comput. Mater. Sci. 80:104–112, 2013.

    Article  CAS  Google Scholar 

  6. Jaffe, R., M. D. Bradley, and M. D. Strauss. Late and very late thrombosis of drug-eluting stents. J. Am. Coll. Cardiol. 50:119–127, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Kukreja, N., Y. Onuma, J. Daemen, and P. W. Serruys. The future of drug-eluting stents. Pharmacol. Res. 57:171–180, 2008.

    Article  CAS  PubMed  Google Scholar 

  8. Lally, C., F. Dolan, and P. J. Prendergast. Cardiovascular stent design and vessel stresses: a finite element analysis. J. Biomech. 38:1574–1581, 2005.

    Article  CAS  PubMed  Google Scholar 

  9. Levy, Y., D. Mandler, J. Weinberger, and A. J. Domb. Evaluation of drug-eluting stent’s coating durability-clinical and regulatory implications. J. Biomed. Mater. Res. B 91:441–451, 2009.

    Article  Google Scholar 

  10. Liang, D. K., D. J. Yang, M. Qi, and W. Q. Wang. Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. Int. J. Cardiol. 104:314–318, 2005.

    Article  CAS  PubMed  Google Scholar 

  11. Lim, D., S. K. Cho, W. P. Park, A. Kristensson, J.-Y. Ko, S. T. S. Al-Hassani, and H.-S. Kim. Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion. Ann. Biomed. Eng. 36:1118–1129, 2008.

    Article  PubMed  Google Scholar 

  12. Lüscher, T. F., J. Steffel, F. R. Eberli, M. Joner, G. Nakazawa, F. C. Tanner, and R. Virmani. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation 115:1051–1058, 2007.

    Article  PubMed  Google Scholar 

  13. Mairtin, E. O., G. Parry, G. E. Beltz, and J. P. McGarry. Potential-based and non-potential-based cohesive zone formulations under mixd-mode separation and over-closure-Part II: Finite element applications. J. Mech. Phys. Solid 63:363–385, 2014.

    Article  Google Scholar 

  14. Mani, G., M. D. Feldman, D. Patel, and C. M. Agrawal. Coronary stents: a materials perspective. Biomaterials 28:1689–1710, 2007.

    Article  CAS  PubMed  Google Scholar 

  15. McGarry, J. P., E. O. Mairtin, G. Parry, and G. E. Beltz. Potential-based and non-potential-based cohesive zone formulations under mixd-mode separation and over-closure-Part I: Theoretical analysis. J. Mech. Phys. Solid. 63:336–362, 2014.

    Article  Google Scholar 

  16. McGarry, J. P., B. P. O’Donnell, P. E. McHugh, and J. G. McGarry. Analysis of the mechanical performance of a cardio vascular stent design on micromechanical modeling. Comput. Mater. Sci. 31:421–438, 2004.

    Article  Google Scholar 

  17. Migliavacca, F., L. Petrini, M. Colombo, F. Auricchio, and R. Pietrabiss. Mechanical behavior of coronary stents investigated through the finite element method. J. Biomech. 35:803–811, 2002.

    Article  PubMed  Google Scholar 

  18. Migliavacca, F., L. Petrini, V. Montanari, I. Quagliana, F. Auricchio, and G. Dubini. A predictive study of the mechanical behaviour of coronary stents by computer modeling. Med. Eng. Phys. 25:13–18, 2005.

    Article  Google Scholar 

  19. Mongrain, R., I. Faik, R. Leask, J. Rodes-Cabau, E. Larose, and O. Bertrand. Effects of diffusion coefficients and strut apposition using numerical simulation for drug coronary stents. J. Biomech. Eng. 129:733–742, 2007.

    Article  PubMed  Google Scholar 

  20. Mortier, P., M. De Beule, S. G. Carlier, R. van Impe, B. Verhegghe, and P. Verdonck. Numerical study of the uniformity of balloon-expandable stent deployment. J. Biomech. Eng. 130:021018, 2008.

    Article  CAS  PubMed  Google Scholar 

  21. O’Brien, B. J., J. S. Stinson, S. R. Larsen, M. J. Eppihimer, and W. M. Carroll. A platinum–chromium steel for cardiovascular stents. Biomaterials 31:3755–3761, 2010.

    Article  PubMed  Google Scholar 

  22. Onuma, Y., and P. W. Serruys. Bioresorbable scaffold: the advent of new era in percutaneous coronary and peripheral revascularization? Circulation 123:779–797, 2011.

    Article  PubMed  Google Scholar 

  23. Otsuka, Y., N. A. Chronos, R. P. Apkarian, and K. A. Robinson. Scanning electron microscopic analysis of defects in polymer coatings of three commercially available stents: comparison of BiodivYsio, Taxus, and Cypher Stents. J. Invasive Cardiol. 19:71–76, 2007.

    PubMed  Google Scholar 

  24. Parry, G., and P. McGarry. An analytical solution for the stress state at stent-coating interfaces. J. Mech. Behav. Biomed. Mater. 10:183–196, 2012.

    Article  CAS  PubMed  Google Scholar 

  25. Paryab, N., D. Cronin, P. Lee-Sullivan, X. Ying, F. Boey, and S. Venkatraman. Uniform expansion of a polymeric helical stent. J. Med. Device 6:021012, 2012.

    Article  Google Scholar 

  26. Pericevic, I., C. Lally, D. Toner, and D. J. Kelly. The Influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med. Eng. Phys. 31:428–433, 2009.

    Article  PubMed  Google Scholar 

  27. Raber, L., and S. Windecker. Current status of drug-eluting stents. Cardiol. Ther. 29:176–189, 2011.

    Article  Google Scholar 

  28. Shuku, O., E. Manabu, S. Lei, O. Seigo, and N. Masato. Fatigue behavior and coating failure of polymer coated drug eluting stent. Strength Fract. Complex. 7:195–203, 2011.

    Google Scholar 

  29. Song, G. Control of biodegradation of biocompatible magnesium alloys. Corros. Sci. 49:1696–1701, 2010.

    Article  Google Scholar 

  30. Wang, W. Q., D. K. Liang, D. Z. Yang, and M. Qi. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. J. Biomech. 39:21–32, 2006.

    Article  PubMed  Google Scholar 

  31. Witte, F. The history of biodegradable magnesium implants: a review. Acta Biomater. 6:1680–1692, 2010.

    Article  CAS  PubMed  Google Scholar 

  32. Wu, W., D. Gastaldi, K. Yang, L. Tan, L. Petrini, and F. Migliavacca. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Mater. Sci. Eng. B 176:1733–1740, 2011.

    Article  CAS  Google Scholar 

  33. Wu, W., W. Q. Wang, D. Z. Yang, and M. Qi. Stent expansion in curved vessel and their interactions: a finite element analysis. J. Biomech. 40:2580–2585, 2007.

    Article  PubMed  Google Scholar 

  34. Zahedmanesh, H., and C. Lally. Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis. Med. Biol. Eng. Comput. 47:385–393, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was primarily supported by the Catalyst grant program through University of Wisconsin-Milwaukee Research Foundation (UWMRF). The authors wish to thank Ismail Guler and Dr. Steve Kangas at Boston Scientific Corp. for helpful communications for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Kim.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Lee, C.W. & Kim, CS. FEA Study on the Stress Distributions in the Polymer Coatings of Cardiovascular Drug-Eluting Stent Medical Devices. Ann Biomed Eng 42, 1952–1965 (2014). https://doi.org/10.1007/s10439-014-1047-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1047-z

Keywords

Navigation