Skip to main content

Advertisement

Log in

An In Vivo Rat Model of Artery Buckling for Studying Wall Remodeling

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Theoretical modeling and in vitro experiments have demonstrated that arterial buckling is a possible mechanism for the development of artery tortuosity. However, there has been no report of whether artery buckling develops into tortuosity, partially due to the lack of in vivo models for long-term studies. The objective of this study was to establish an in vivo buckling model in rat carotid arteries for studying arterial wall remodeling after buckling. Rat left carotid arteries were transplanted to the right carotid arteries to generate buckling under in vivo pressure and were maintained for 1 week to examine wall remodeling and adaptation. Our results showed that a significant buckling was achieved in the carotid arterial grafts with altered wall stress. Cell proliferation and matrix metalloprotinease-2 (MMP-2) expression in the buckled arteries increased significantly compared with the controls. The tortuosity level of the grafts also slightly increased 1 week post-surgery, while there was no change in vessel dimensions, blood pressure, and blood flow velocity. The artery buckling model provides a useful tool for further study of the adaptation of arteries into tortuous shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Aleksic, M., G. Schutz, S. Gerth, and J. Mulch. Surgical approach to kinking and coiling of the internal carotid artery. J. Cardiovasc. Surg. (Torino) 45(1):43–48, 2004.

    CAS  Google Scholar 

  2. Brown, W. R., D. M. Moody, V. R. Challa, C. R. Thore, and J. A. Anstrom. Venous collagenosis and arteriolar tortuosity in leukoaraiosis. J. Neurol. Sci. 203–204:159–163, 2002.

    Article  PubMed  Google Scholar 

  3. Cheung, A. T., S. Ramanujam, D. A. Greer, L. F. Kumagai, and T. T. Aoki. Microvascular abnormalities in the bulbar conjunctiva of patients with type 2 diabetes mellitus. Endocr. Pract. 7(5):358–363, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Cho, Y. K., A. I. Farbman, and D. V. Smith. The timing of alpha-gustducin expression during cell renewal in rat vallate taste buds. Chem. Senses 23(6):735–742, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Datir, P., A. Y. Lee, S. D. Lamm, and H. C. Han. Effects of geometric variations on the buckling of arteries. Int. J. Appl. Mech. 3(2):385–406, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Del Corso, L., D. Moruzzo, B. Conte, M. Agelli, A. M. Romanelli, F. Pastine, M. Protti, F. Pentimone, and G. Baggiani. Tortuosity, kinking, and coiling of the carotid artery: expression of atherosclerosis or aging? Angiology 49(5):361–371, 1998.

    Article  PubMed  Google Scholar 

  7. Fung, Y. C., Biomechanics: Motion, Flow, Stress, and Growth. New York: Springer-Verlag, p. xv, 1990. 569 pp.

  8. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. New York: Springer Verlag, 1993.

  9. Galis, Z. S., and J. J. Khatri. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ. Res. 90(3):251–262, 2002.

    CAS  PubMed  Google Scholar 

  10. Godin, D., E. Ivan, C. Johnson, R. Magid, and Z. S. Galis. Remodeling of carotid artery is associated with increased expression of matrix metalloproteinases in mouse blood flow cessation model. Circulation 102(23):2861–2866, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. Han, H. C. A biomechanical model of artery buckling. J. Biomech. 40(16):3672–3678, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Han, H. C. Nonlinear buckling of blood vessels: a theoretical study. J. Biomech. 41(12):2708–2713, 2008.

    Article  PubMed  Google Scholar 

  13. Han, H. C. Blood vessel buckling within soft surrounding tissue generates tortuosity. J. Biomech. 42(16):2797–2801, 2009.

    Article  PubMed  Google Scholar 

  14. Han, H. C. The theoretical foundation for artery buckling under internal pressure. J. Biomech. Eng. 131(12):124501, 2009.

    Article  PubMed  Google Scholar 

  15. Han, H. C. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J. Vasc. Res. 49(3):185–197, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Han, H. C., D. N. Ku, and R. P. Vito. Arterial wall adaptation under elevated longitudinal stretch in organ culture. Ann. Biomed. Eng. 31(4):403–411, 2003.

    Article  PubMed  Google Scholar 

  17. Han, H. C., D. N. Ku, and R. P. Vito. Arterial wall adaptation under elevated longitudinal stretch in organ culture. Ann. Biomed. Eng. 31(4):403–411, 2003.

    Article  PubMed  Google Scholar 

  18. Hart, W. E., M. Goldbaum, B. Cote, P. Kube, and M. R. Nelson. Measurement and classification of retinal vascular tortuosity. Int. J. Med. Inform. 53(2–3):239–252, 1999.

    Article  CAS  PubMed  Google Scholar 

  19. Hayman, D. M., J. Z. Zhang, Q. Liu, Y. M. Xiao, and H. C. Han. Smooth muscle cell contraction increases the critical buckling pressure of arteries. J. Biomech. 46(4):841–844, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Hiroki, M., K. Miyashita, and M. Oda. Tortuosity of the white matter medullary arterioles is related to the severity of hypertension. Cerebrovasc. Dis. 13(4):242–250, 2002.

    Article  PubMed  Google Scholar 

  21. Hsu, S., J. S. Chu, F. F. Chen, A. Wang, and S. Li. Effects of fluid shear stress on a distinct population of vascular smooth muscle cells. Cell. Mol. Bioeng. 4(4):627–636, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, p. xvi, 2002, 757 pp.

  23. Jackson, Z. S., D. Dajnowiec, A. I. Gotlieb, and B. L. Langille. Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler. Thromb. Vasc. Biol. 25(5):957–962, 2005.

    Article  CAS  PubMed  Google Scholar 

  24. Jackson, Z. S., A. I. Gotlieb, and B. L. Langille. Wall tissue remodeling regulates longitudinal tension in arteries. Circ. Res. 90(8):918–925, 2002.

    Article  CAS  PubMed  Google Scholar 

  25. Jakob, M., D. Spasojevic, O. N. Krogmann, H. Wiher, R. Hug, and O. M. Hess. Tortuosity of coronary arteries in chronic pressure and volume overload. Cathet. Cardiovasc. Diagn. 38(1):25–31, 1996.

    Article  CAS  PubMed  Google Scholar 

  26. Johnson, C., and Z. S. Galis. Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization. Arterioscler. Thromb. Vasc. Biol. 24(1):54–60, 2004.

    Article  CAS  PubMed  Google Scholar 

  27. Kuzuya, M., S. Kanda, T. Sasaki, N. Tamaya-Mori, X. W. Cheng, T. Itoh, S. Itohara, and A. Iguchi. Deficiency of gelatinase a suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia. Circulation 108(11):1375–1381, 2003.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, A. Y., B. Han, S. D. Lamm, C. A. Fierro, and H. C. Han. Effects of elastin degradation and surrounding matrix support on artery stability. Am. J. Physiol. Heart Circ. Physiol. 302(4):H873–H884, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Liu, S. Q. Influence of tensile strain on smooth muscle cell orientation in rat blood vessels. J. Biomech. Eng. 120(3):313–320, 1998.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Q., and H. C. Han. Mechanical buckling of arterioles in collateral development. J. Theor. Biol. 316:42–48, 2013.

    Article  PubMed  Google Scholar 

  31. Metz, H., R. M. Murray-Leslie, R. G. Bannister, J. W. Bull, and J. Marshall. Kinking of the internal carotid artery. Lancet 1(7174):424–426, 1961.

    Article  CAS  PubMed  Google Scholar 

  32. Nichols, W. W., and M. F. O’Rourke. McDonald’s Blood Flow in Arteries: Theoretical, Experimental, and Clinical Principles, 4th ed. London: Arnold Publisher, pp 67–94. 2005.

  33. Owen, C. G., R. S. Newsom, A. R. Rudnicka, S. A. Barman, E. G. Woodward, and T. J. Ellis. Diabetes and the tortuosity of vessels of the bulbar conjunctiva. Ophthalmology 115(6):e27–e32, 2008.

    Article  PubMed  Google Scholar 

  34. Rennier, K., and J. Y. Ji. Effect of shear stress and substrate on endothelial DAPK expression, caspase activity, and apoptosis. BMC Res. Notes 6:10, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sho, E., M. Sho, T. M. Singh, H. Nanjo, M. Komatsu, C. Xu, H. Masuda, and C. K. Zarins. Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix. Exp. Mol. Pathol. 73(2):142–153, 2002.

    Article  CAS  PubMed  Google Scholar 

  36. Wong, L. C., and B. L. Langille. Developmental remodeling of the internal elastic lamina of rabbit arteries: effect of blood flow. Circ. Res. 78(5):799–805, 1996.

    Article  CAS  PubMed  Google Scholar 

  37. Xiao, Y., D. Hayman, S. S. Khalafvand, M. L. Lindsey, and H. C. Han. Artery buckling stimulates cell proliferation through NF-κB signaling. Am. J. Physiol. Heart Circ. Physiol. 2014 (in revision).

  38. Xiao, Y. M., J. K. Chesnutt, and H. C. Han, Artery buckling stimulates MMP-2 expression in arterial wall. BMES Annual Meeting, Sept. 25–28, Seattle, Washington, 2013.

Download references

Acknowledgments

This work was supported by internal funds from UTSA. It was also partially supported by CAREER award #0644646 from the National Science Foundation and grant R01HL095852 from the National Institute of Health. We thank Dr. Shu Q Liu of Northwestern University for his helpful suggestions. We also thank Dr. Yangming Xiao in our lab and staff in the Laboratory Animal Resources Center of UTSA, and Dr. Merry Lindsey’s lab for their kind help.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Chao Han.

Additional information

Associate Editor K. A. Athanasiou oversaw the review of this article.

Jinzhou Zhang and Qin Liu equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, Q. & Han, HC. An In Vivo Rat Model of Artery Buckling for Studying Wall Remodeling. Ann Biomed Eng 42, 1658–1667 (2014). https://doi.org/10.1007/s10439-014-1017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1017-5

Keywords

Navigation