Skip to main content
Log in

From the Bottom Up: Assessing the Spectral Ability of Common Multispectral Sensors to Detect Surface Archaeological Deposits Using Field Spectrometry and Advanced Classifiers in the Shashi-Limpopo Confluence Area

  • Original Article
  • Published:
African Archaeological Review Aims and scope Submit manuscript

Abstract

This paper investigates the ability of six common multispectral sensors (GeoEye, Landsat 8 OLI, RapidEye, Sentinel-2, SPOT 5, and WorldView-2) to map archaeological sites typically inhabited by the farming communities of Southern Africa and characterized by surface features such as middens, non-vitrified dung, and vitrified dung. To achieve this, hyperspectral data collected in the field using a GER-1500 field spectroradiometer were resampled to the spectral resolutions of the selected sensors using the spectral library resampling tool in ENVI. Mean decrease in accuracy was used to assess the importance of both hyperspectral wavelengths and each band allocated to a multispectral sensor in discriminating the selected archaeological classes. Two predictive models based on the resampled hyperspectral data were developed in R using algorithms for support vector machine (SVM) and random forest (RF) classifiers. The results demonstrate that data resampled to the resolution of common multispectral sensors have the ability to predict surface archaeological features using RF and SVM classifiers. Important bands for predicting sites are mostly in the visible and shortwave infrared regions of the electromagnetic spectrum. The best performance was achieved with data resampled to the resolution of the Sentinel-2 sensor, which attained 81.90% and 92.38% accuracy in both RF and SVM classifiers respectively. The predictions indicate the relevance of field spectroscopy studies to better understand the spectral models critical for archaeological sites detection.

Résumé

Cet article étudie la capacité de six courants capteurs multispectraux (GeoEye, Landsat 8 OLI, RapidEye, Sentinel-2, SPOT 5 et WorldView-2) les plus appropriés pour la cartographie des sites archéologiques habités par les communautés agricoles de l’Afrique australe. Ces sites ont des caractéristiques de surface spécifiques, telles que des amas, de bouse non vitrifiée et de bouse vitrifiée. Pour y parvenir, des données hyperspectrales ont été recueillies sur le terrain à l’aide d’un spectroradiomètre de champ GER-1500. Les données ont ensuite été rééchantillonnées aux résolutions spectrales de les capteurs sélectionnés. Cela s’est fait à l’aide de l’outil de rééchantillonnage des bibliothèques spectrales integré dans l’ENVI. La diminution moyenne de la precision a été utilisée pour évaluer l’importance des longueurs d’onde hyperspectrales et de chaque bande attribuée à un capteur multispectral, afin de distinguer les classes archéologiques susmentionnées. Deux modèles prédictifs basés sur les données hyperspectrales rééchantillonnées ont été développés dans le R, en utilisant des algorithmes classificateurs « support vector machine » (SVM) et « random forest » (RF). Les résultats ont montré que les données rééchantillonnées à la résolution des capteurs multispectraux courants permettent de prédire les caractéristiques archéologiques de surface à l’aide de classificateurs RF et SVM. Les bandes importantes pour la prédiction des sites étaient principalement dans les régions de l’infrarouge visible et à ondes courtes du spectre électromagnétique. Les meilleures performances ont été obtenues avec des données rééchantillonnées à la résolution du capteur Sentinel-2, qui ont atteint une précision de 81,90% et 92,38% dans les classificateurs RF et SVM. Les prédictions indiquent la pertinence des études de spectroscopie de terrain pour la compréhension des modèles spectraux les plus importants pour la détection des sites archéologiques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Rahman, E. M., Mutanga, O., Adam, E., & Ismail, R. (2014). Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 48–59.

    Article  Google Scholar 

  • Adam, E., Mutanga, O., Rugege, D., & Ismail, R. (2009). Field spectrometry of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands of St Lucia, South Africa. IEEE, IV, 260–263.

    Google Scholar 

  • Adam, E., Mutanga, O., Rugege, D., & Ismail, R. (2012). Discriminating the papyrus vegetation (Cyperus papyrus L.) and its co-existent species using random forest and hyperspectral data resampled to HYMAP. International Journal of Remote Sensing, 33, 552–569.

    Article  Google Scholar 

  • Adam, E., Mutanga, O., Odindi, J., & Abdel-Rahman, E. M. (2014). Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35, 3440–3458.

    Article  Google Scholar 

  • Adam, E., Deng, H., Odindi, J., Abdel-Rahman, E. M., & Mutanga, O. (2017). Detecting the early stage of Phaeosphaeria leaf spot infestations in maize crop using in situ hyperspectral data and guided regularized random forest algorithm. Journal of Spectroscopy, 2017. https://doi.org/10.1155/2017/6961387.

  • Agapiou, A., Hadjimitsis, D., Sarris, A., Themistocleous, K., & Papadavid, G. (2010). Hyperspectral ground truth data for the detection of buried architectural remains. In M. Ioannides, D. Fellner, A. Georgopoulos, & D. G. Hadjimitsis (Eds.), Digital heritage: Lecture notes in computer science (Vol. 6436, pp. 318–331). New York: Springer.

    Chapter  Google Scholar 

  • Agapiou, A., Hadjimitsis, D. G., & Alexakis, D. D. (2012a). Evaluation of broadband and narrowband vegetation indices for the identification of archaeological crop marks. Remote Sensing, 4, 3892–3919.

    Article  Google Scholar 

  • Agapiou, A., Hadjimitsis, D. G., Alexakis, D., & Sarris, A. (2012b). Observatory validation of Neolithic tells (‘Magoules’) in the Thessalian plain, Central Greece, using hyperspectral spectroradiometric data. Journal of Archaeological Science, 39, 1499–1512.

    Article  Google Scholar 

  • Agapiou, A., Alexakis, D. D., & Hadjimitsis, D. G. (2014a). Spectral sensitivity of ALOS, ASTER, IKONOS, LANDSAT and SPOT satellite imagery intended for the detection of archaeological crop marks. International Journal of Digital Earth, 7, 351–372.

    Article  Google Scholar 

  • Agapiou, A., Alexakis, D. D., Sarris, A., & Hadjimitsis, D. G. (2014b). Evaluating the potentials of Sentinel-2 for archaeological perspective. Remote Sensing, 6, 2176–2194.

    Article  Google Scholar 

  • Ahmad, S., Kalra, A., & Stephen, H. (2010). Estimating soil moisture using remote sensing data: A machine learning approach. Advances in Water Resources, 33, 69–80. https://doi.org/10.1016/j.advwatres.2009.10.008.

    Article  Google Scholar 

  • Altaweel, M. (2005). The use of ASTER satellite imagery in archaeological contexts. Archaeological Prospection, 12, 151–166.

    Article  Google Scholar 

  • Analytical Spectral Devices, Inc. (2018). FieldSpec 4 Standard-Res Spectroradiometer. Available at www.asdi.com/products-and-services/fieldspec-spectroradiometers/fieldspec-4-standard-res. Accessed 20 Nov 2018.

  • Antonites, A., & Ashley, C. Z. (2016). The mobilities turn and archaeology: New perspectives on socio-political complexity in thirteenth-century northern South Africa. Azania: Archaeological Research in Africa, 51, 469–488. https://doi.org/10.1080/0067270X.2016.1249586.

    Article  Google Scholar 

  • Banning, E. B., Hawkins, A. L., & Stewart, S. T. (2006). Detection functions for archaeological survey. American Antiquity, 71, 723–742.

    Article  Google Scholar 

  • Beck, A. R. (2007). Archaeological site detection: The importance of contrast. In Proceedings of the 2007 Annual Conference of the Remote Sensing and Photogrammetry Society, Newcastle University, Sept. 11–14, 2007 (pp. 307–312). Newcastle: The Remote Sensing and Photogrammetry Society.

  • Beck, A., Philip, G., Abdulkarim, M., & Donoghue, D. (2007). Evaluation of Corona and Ikonos high resolution satellite imagery for archaeological prospection in western Syria. Antiquity, 81, 161–175.

    Article  Google Scholar 

  • Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31.

    Article  Google Scholar 

  • Ben-Dor, E. (2002). Quantitative remote sensing of soil properties. Advances in Agronomy, 75, 173–243. https://doi.org/10.1016/S0065-2113(02)75005-0.

    Article  Google Scholar 

  • Ben-Dor, E., Inbar, Y., & Chen, Y. (1997). The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sensing of Environment, 61, 1–15.

    Article  Google Scholar 

  • Ben-Dor, E., Chabrillat, S., Demattê, J. A. M., Taylor, G. R., Hill, J., Whiting, M. L., & Sommer, S. (2009). Using imaging spectroscopy to study soil properties. Remote Sensing of Environment, 113, (Suppl. 1), S38–S55. https://doi.org/10.1016/j.rse.2008.09.019.

  • Ben-Dor, E., Ong, C., & Lau, I. C. (2015). Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma, 245, 112–124.

    Article  Google Scholar 

  • Ben-Dor, E., Granot, A., & Notesco, G. (2017). A simple apparatus to measure soil spectral information in the field under stable conditions. Geoderma, 306, 73–80. https://doi.org/10.1016/j.geoderma.2017.06.025.

    Article  Google Scholar 

  • Ben-Hur, A., & Weston, J. (2010). A user’s guide to support vector machines. In O. Carugo & F. Eisenhaber (Eds.), Data mining techniques for the life sciences (pp. 223–239). New York: Humana Press.

    Chapter  Google Scholar 

  • Biagetti, S., Merlo, S., Adam, E., Lobo, A., Conesa, F. C., Knight, J., Bekrani, H., Crema, E. R., Alcaina-Mateos, J., & Madella, M. (2017). High and medium resolution satellite imagery to evaluate late Holocene human–environment interactions in arid lands: A case study from the Central Sahara. Remote Sensing, 9, 351.

    Article  Google Scholar 

  • Bordy, E. M., & Catuneanu, O. (2002). Sedimentology of the Beaufort-Molteno Karoo fluvial strata in the Tuli Basin, South Africa. South African Journal of Geology, 105, 51–66.

    Article  Google Scholar 

  • Bousbih, S., Zribi, M., Pelletier, C., Gorrab, A., Lili-Chabaane, Z., Baghdadi, N., Ben Aissa, N., & Mougenot, B. (2019). Soil texture estimation using radar and optical data from Sentinel-1 and Sentinel-2. Remote Sensing, 11, 1520. https://doi.org/10.3390/rs11131520.

    Article  Google Scholar 

  • Bradbury, G., Mitchell, K., & Weyrich, T. (2013). Multi-spectral material classification in landscape scenes using commodity hardware. In R. Wilson, E. Hancock, A. Bors, & W. Smith (Eds.), Computer analysis of images and patterns (pp. 209–216). Berlin: Springer.

    Chapter  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Breiman, L., & Cutler, A. (2007). Random forests-classification description. Berkeley: Department of Statistics. Available at https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm. Accessed 24 Nov 2018.

  • Brieuc, M. S. O., Ono, K., Drinan, D. P., & Naish, K. A. (2015). Integration of Random Forest with population-based outlier analyses provides insight on the genomic basis and evolution of run timing in Chinook salmon (Oncorhynchus tshawytscha). Molecular Ecology, 24, 2729–2746.

    Article  Google Scholar 

  • Burger, J., & Gowen, A. (2011). Data handling in hyperspectral image analysis. Chemometrics and Intelligent Laboratory Systems, 108, 13–22.

    Article  Google Scholar 

  • Calabrese, J. A. (2000). Interregional interaction in southern Africa: Zhizo and Leopard’s Kopje relations in northern South Africa, southwestern Zimbabwe, and eastern Botswana, AD 1000 to 1200. African Archaeological Review, 17, 183–210.

    Article  Google Scholar 

  • Castaldi, F., Palombo, A., Santini, F., Pascucci, S., Pignatti, S., & Casa, R. (2016). Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sensing of Environment, 179, 54–65.

    Article  Google Scholar 

  • Cavalli, R. M., Colosi, F., Palombo, A., Pignatti, S., & Poscolieri, M. (2007). Remote hyperspectral imagery as a support to archaeological prospection. Journal of Cultural Heritage, 8, 272–283.

    Article  Google Scholar 

  • Cavalli, R. M., Licciardi, G. A., & Chanussot, J. (2013). Detection of anomalies produced by buried archaeological structures using nonlinear principal component analysis applied to airborne hyperspectral image. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6, 659–669. https://doi.org/10.1109/JSTARS.2012.2227301.

    Article  Google Scholar 

  • Cerra, D., Agapiou, A., Cavalli, R. M., & Sarris, A. (2018). An objective assessment of hyperspectral indicators for the detection of buried archaeological relics. Remote Sensing, 10, 500.

    Article  Google Scholar 

  • Chagas, C. d. S., de Carvalho Jr., W., Bhering, S. B., & Calderano Filho, B. (2016). Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions. CATENA, 139, 232–240. https://doi.org/10.1016/j.catena.2016.01.001.

    Article  Google Scholar 

  • Chen, Y.-W., & Lin, C.-J. (2006). Combining SVMs with various feature selection strategies. In I. Guyon, M. Nikravesh, S. Gunn, & L. A. Zadeh (Eds.), Feature extraction: Studies in fuzziness and soft computing (Vol. 207, pp. 315–324). Berlin: Springer.

    Chapter  Google Scholar 

  • Chinoda, G., Moyce, W., Matura, N., & Owen, R. (2009). Baseline report on the geology of the Limpopo Basin Area. WaterNet Working Paper 7.

  • Chirikure, S. (2013). Heritage conservation in Africa: The good, the bad, and the challenges. South African Journal of Science, 109, 1–3. https://doi.org/10.1590/sajs.2013/a003.

    Article  Google Scholar 

  • Chirikure, S., Manyanga, M., Pollard, A. M., Bandama, F., Mahachi, G., & Pikirayi, I. (2014). Zimbabwe culture before Mapungubwe: New evidence from Mapela Hill, South-Western Zimbabwe. PLoS One, 9, e111224.

    Article  Google Scholar 

  • Cochrane, M. A. (2000). Using vegetation reflectance variability for species level classification of hyperspectral data. International Journal of Remote Sensing, 21, 2075–2087. https://doi.org/10.1080/01431160050021303.

    Article  Google Scholar 

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46.

    Article  Google Scholar 

  • Connah, G. (2004). Forgotten Africa: An introduction to its archaeology. Abingdon: Routledge.

    Book  Google Scholar 

  • Corrie, R. K. (2011). Detection of ancient Egyptian archaeological sites using satellite remote sensing and digital image processing. Proc. SPIE 8181, Earth Resources and Environmental Remote Sensing/GIS Applications II, 81811B (26 October 2011). International Society for Optics and Photonics. https://doi.org/10.1117/12.898230.

  • Cozzolino, D., & Moron, A. (2003). The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics. The Journal of Agricultural Science, 140, 65–71.

    Article  Google Scholar 

  • Crawford, O. G. S. (1923). Air survey and archaeology. Geographical Journal, 342–360.

  • Danese, M., Masini, N., Biscione, M., & Lasaponara, R. (2014). Predictive modeling for preventive archaeology: Overview and case study. Open Geosciences, 6. https://doi.org/10.2478/s13533-012-0160-5.

  • De Laet, V., Paulissen, E., & Waelkens, M. (2007). Methods for the extraction of archaeological features from very high-resolution Ikonos-2 remote sensing imagery, Hisar (Southwest Turkey). Journal of Archaeological Science, 34, 830–841.

    Article  Google Scholar 

  • De Laet, V., Paulissen, E., Meuleman, K., & Waelkens, M. (2009). Effects of image characteristics on the identification and extraction of archaeological features from Ikonos-2 and Quickbird-2 imagery: Case study Sagalassos (Southwest Turkey). International Journal of Remote Sensing, 30, 5655–5668. https://doi.org/10.1080/01431160802705821.

    Article  Google Scholar 

  • Denbow, J. R. (1979). Cenchrus ciliaris: An ecological indicator of Iron age middens using aerial photography in eastern Botswana. South African Journal of Science, 75, 405–408.

    Google Scholar 

  • Denbow, J. R. (1986). A new look at the later prehistory of the Kalahari. The Journal of African History, 27, 3–28.

  • Denbow, J. R. (1990). Congo to Kalahari: Data and hypotheses about the political economy of the western stream of the Early Iron Age. African Archaeological Review, 8, 139–175.

    Article  Google Scholar 

  • Dhau, I., Adam, E., Mutanga, O., Ayisi, K., Abdel-Rahman, E. M., Odindi, J., & Masocha, M. (2018a). Testing the capability of spectral resolution of the new multispectral sensors on detecting the severity of grey leaf spot disease in maize crop. Geocarto International, 33, 1223–1236. https://doi.org/10.1080/10106049.2017.1343391.

    Article  Google Scholar 

  • Dhau, I., Adam, E., Mutanga, O., & Ayisi, K. K. (2018b). Detecting the severity of maize streak virus infestations in maize crop using in situ hyperspectral data. Transactions of the Royal Society of South Africa, 73, 8–15. https://doi.org/10.1080/0035919X.2017.1370034.

    Article  Google Scholar 

  • Díaz-Uriarte, R., & De Andres, S. A. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3.

    Article  Google Scholar 

  • Doneus, M., Verhoeven, G., Atzberger, C., Wess, M., & Ruš, M. (2014). New ways to extract archaeological information from hyperspectral pixels. Journal of Archaeological Science, 52, 84–96.

    Article  Google Scholar 

  • Duro, D. C., Franklin, S. E., & Dubé, M. G. (2012). A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment, 118, 259–272.

    Article  Google Scholar 

  • Eloff, J. F., & Meyer, A. (1981). The Greefswald sites. In E. A. Voigt (Ed.), Guide to archaeological sites in the northern and eastern Transvaal (pp. 7–22). Pretoria: Transvaal Museum.

    Google Scholar 

  • Fagan, B. (1964). The Greefswald sequence: Bambandyanalo and Mapungubwe. The Journal of African History, 5, 337–361. https://doi.org/10.1017/S0021853700005053.

    Article  Google Scholar 

  • Farhat, M. R., Sultana, R., Iartchouk, O., Bozeman, S., Galagan, J., Sisk, P., Stolte, C., Nebenzahl-Guimaraes, H., Jacobson, K., & Sloutsky, A. (2016). Genetic determinants of drug resistance in Mycobacterium tuberculosis and their diagnostic value. American Journal of Respiratory and Critical Care Medicine, 194, 621–630.

    Article  Google Scholar 

  • Featherstone, R., Horne, P., Macleod, D., & Bewley, R. (1999). Aerial reconnaissance over England in summer 1996. Archaeological Prospection, 6, 47–62. https://doi.org/10.1002/(SICI)1099-0763(199906)6:2<47::AID-ARP113>3.0.CO;2-Y.

    Article  Google Scholar 

  • Feng, J., Jiao, L., Liu, F., Sun, T., & Zhang, X. (2016). Unsupervised feature selection based on maximum information and minimum redundancy for hyperspectral images. Pattern Recognition, 51, 295–309.

    Article  Google Scholar 

  • Fleisher, J., & LaViolette, A. (1999). Elusive wattle-and-daub: Finding the hidden majority in the archaeology of the Swahili. Azania: Archaeological Research in Africa, 34, 87–108. https://doi.org/10.1080/00672709909511473.

    Article  Google Scholar 

  • Foard, G. (1977). Systematic fieldwalking and the investigation of Saxon settlement in Northamptonshire. World Archaeology, 9, 357–374.

    Article  Google Scholar 

  • Fowler, M. J. F. (2002). Satellite remote sensing and archaeology: A comparative study of satellite imagery of the environs of Figsbury Ring, Wiltshire. Archaeological Prospection, 9, 55–69.

    Article  Google Scholar 

  • Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31, 2225–2236.

    Article  Google Scholar 

  • Ghosh, A., Fassnacht, F. E., Joshi, P. K., & Koch, B. (2014). A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. International Journal of Applied Earth Observation and Geoinformation, 26, 49–63.

    Article  Google Scholar 

  • Gojda, M., & Hejcman, M. (2012). Cropmarks in main field crops enable the identification of a wide spectrum of buried features on archaeological sites in Central Europe. Journal of Archaeological Science, 39, 1655–1664.

    Article  Google Scholar 

  • Götze, A. R., Cilliers, S. S., & Bezuidenhout, H. (2008). Analysis of the vegetation of the sandstone ridges (Ib land type) of the north-eastern parts of the Mapungubwe National Park, Limpopo Province, South Africa. Koedoe: African Protected Area Conservation and Science, 50, 72–81.

    Article  Google Scholar 

  • Grimm, R., Behrens, T., Märker, M., & Elsenbeer, H. (2008). Soil organic carbon concentrations and stocks on Barro Colorado Island — Digital soil mapping using random forests analysis. Geoderma, 146, 102–113. https://doi.org/10.1016/j.geoderma.2008.05.008.

    Article  Google Scholar 

  • Haaland, R. (1995). Sedentism, cultivation, and plant domestication in the Holocene middle Nile region. Journal of Field Archaeology, 22, 157–174.

    Google Scholar 

  • Hanisch, E. O. M. (1981). Schroda: A Zhizo site in the northern Transvaal. In E. A. Voigt (Ed.), Guide to archaeological sites in the northern and eastern Transvaal (pp. 37–53). Pretoria: Transvaal Museum.

    Google Scholar 

  • Hanisch, E. O. M. (2002). Schroda: The archaeological evidence. In J. A. Van Schalkwyk (Ed.), Sculptured in clay: Iron Age figurines from Schroda, Limpopo Province, South Africa (pp. 20–39). Pretoria: National Cultural History Museum.

    Google Scholar 

  • Hejcman, M., & Smrž, Z. (2010). Cropmarks in stands of cereals, legumes and winter grape indicate sub-soil archaeological features in the agricultural landscape of Central Europe. Agriculture, Ecosystems & Environment, 138, 348–354. https://doi.org/10.1016/j.agee.2010.06.004.

    Article  Google Scholar 

  • Hitchings, P. M. N., Abu Jayyab, K., Bikoulis, P., & Banning, E. B. (2013). A Bayesian approach to archaeological survey in North-West Jordan. Antiquity, 87, 336.

    Google Scholar 

  • Hitchner, R. B. (1995). Historical text and archaeological context in Roman North Africa: The Albertini tablets and the Kasserine survey. In D. B. Small (Ed.), Methods in the Mediterranean: Historical and archaeological views on texts and archaeology (pp. 124–142). Leiden: E. J. Brill.

    Google Scholar 

  • Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A practical guide to support vector classification. Taiwan: Department of Computer Science andInformation Engineering. Available at https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf. Accessed 24 Nov 2018.

  • Huffman, T. N. (1982). Archaeology and ethnohistory of the African Iron Age. Annual Review of Anthropology, 11, 133–150.

    Article  Google Scholar 

  • Huffman, T. N. (1986). Iron Age settlement patterns and the origins of class distinctions in southern Africa. Advances in World Archaeology, 5, 291–338.

    Google Scholar 

  • Huffman, T. N. (2000). Mapungubwe and the origins of the Zimbabwe culture. Goodwin Series, 8, 14–29.

    Article  Google Scholar 

  • Huffman, T. N. (2001). The Central Cattle Pattern and interpreting the past. Southern African Humanities, 13, 19–35.

    Google Scholar 

  • Huffman, T. N. (2007). Handbook to the iron age: The archaeology of pre-colonial farming societies in southern Africa. Pietermaritzburg: University of KwaZulu-Natal Press.

  • Huffman, T. N. (2008). Climate change during the iron age in the Shashe-Limpopo Basin, southern Africa. Journal of Archaeological Science, 35, 2032–2047.

    Article  Google Scholar 

  • Huffman, T. N. (2009a). Origins of Mapungubwe project, progress report 2008 prepared for De beers, the NRF, SAHRA and SANParks, Unpublished, pp. 1–65.

  • Huffman, T. N. (2009b). Mapungubwe and Great Zimbabwe: The origin and spread of social complexity in southern Africa. Journal of Anthropological Archaeology, 28, 37–54.

    Article  Google Scholar 

  • Huffman, T. N. (2011). Origins of Mapungubwe project: Progress report, 2009–2010. Johannesburg: Archaeological Resources Management, School of Geography, Archaeology & Environmental Studies, University of the Witwatersrand.

    Google Scholar 

  • Huffman, T. N. (2012). Historical archaeology of the Mapungubwe area: Boer, Birwa, Sotho-Tswana and Machete. Southern African Humanities, 24, 33–59.

    Google Scholar 

  • Huffman, T. N., & Du Piesanie, J. (2011). Khami and the Venda in the Mapungubwe landscape. Journal of African Archaeology, 9, 189–206.

    Article  Google Scholar 

  • Huffman, T. N., Elburg, M., & Watkeys, M. (2013). Vitrified cattle dung in the Iron Age of southern Africa. Journal of Archaeological Science, 40, 3553–3560.

    Article  Google Scholar 

  • Kankpeyeng, B. W., & DeCorse, C. R. (2004). Ghana’s vanishing past: Development, antiquities, and the destruction of the archaeological record. African Archaeological Review, 21, 89–128. https://doi.org/10.1023/B:AARR.0000030786.24067.19.

    Article  Google Scholar 

  • Keay, S. J., Parcak, S. H., & Strutt, K. D. (2014). High resolution space and ground-based remote sensing and implications for landscape archaeology: The case from Portus, Italy. Journal of Archaeological Science, 52, 277–292.

    Article  Google Scholar 

  • Khandlhela, M., & May, J. (2006). Poverty, vulnerability and the impact of flooding in the Limpopo Province, South Africa. Natural Hazards, 39, 275–287.

    Article  Google Scholar 

  • Klehm, C. E. (2017). Local dynamics and the emergence of social inequality in Iron Age Botswana. Current Anthropology, 58, 604–633. https://doi.org/10.1086/693960.

    Article  Google Scholar 

  • Klehm, C. E., & Ernenwein, E. G. (2016). Iron Age transformations at Mmadipudi Hill, Botswana: Identifying spatial organization through electromagnetic induction survey. African Archaeological Review, 33, 45–59.

    Article  Google Scholar 

  • Klehm, C., Barnes, A., Follett, F., Simon, K., Kiahtipes, C., & Mothulatshipi, S. (2019). Toward archaeological predictive modeling in the Bosutswe region of Botswana: Utilizing multispectral satellite imagery to conceptualize ancient landscapes. Journal of Anthropological Archaeology, 54, 68–83. https://doi.org/10.1016/j.jaa.2019.02.002.

    Article  Google Scholar 

  • Kohler, T. A., & Parker, S. C. (1986). Predictive models for archaeological resource location. Advances in Archaeological Method and Theory, 9, 397–452.

    Article  Google Scholar 

  • Kokaly, R. F. (2001). Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment, 75, 153–161.

    Article  Google Scholar 

  • Koleini, F., Prinsloo, L. C., Biemond, W. M., Colomban, P., Ngo, A., Boeyens, J. C. A., & van der Ryst, M. M. (2016). Towards refining the classification of glass trade beads imported into Southern Africa from the 8th to the 16th century AD. Journal of Cultural Heritage, 19, 435–444. https://doi.org/10.1016/j.culher.2015.11.003.

    Article  Google Scholar 

  • Lange, D. (2007). The emergence of social complexity in the southern Chad Basin towards 500 BC: Archaeological and other evidence. Borno Museum Society Newsletter, 1, 68–71.

    Google Scholar 

  • Lasaponara, R., & Masini, N. (2006). Identification of archaeological buried remains based on the normalized difference vegetation index (NDVI) from quickbird satellite data. IEEE Geoscience and Remote Sensing Letters, 3, 325–328.

    Article  Google Scholar 

  • Lasaponara, R., Leucci, G., Masini, N., & Persico, R. (2014). Investigating archaeological looting using satellite images and GEORADAR: The experience in Lambayeque in North Peru. Journal of Archaeological Science, 42, 216–230.

    Article  Google Scholar 

  • Lasaponara, R., Elfadaly, A., & Attia, W. (2016). Low cost space technologies for operational change detection monitoring around the archaeological area of Esna-Egypt. In O. Gervasi, B. Murgante, S. Misra, A. M. A. C. Rocha, C. M. Torre, D. Taniar, B. O. Apduhan, E. Stankova, & S. Wang (Eds.), Computational science and its applications – ICCSA 2016, lecture notes in computer science (pp. 611–621). New York: Springer.

    Chapter  Google Scholar 

  • Lebedev, A. V., Westman, E., Van Westen, G. J. P., Kramberger, M. G., Lundervold, A., Aarsland, D., Soininen, H., Kłoszewska, I., Mecocci, P., & Tsolaki, M. (2014). Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness. NeuroImage: Clinical, 6, 115–125.

    Article  Google Scholar 

  • Li, W., Chen, C., Su, H., & Du, Q. (2015). Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Transactions on Geoscience and Remote Sensing, 53, 3681–3693.

    Article  Google Scholar 

  • Liang, S. J., Wang, J., & Jiang, B. (2012). A systematic view of remote sensing. In S. Liang, X. Li, & J. Wang (Eds.), Advanced remote sensing (pp. 1–31). New York: Academic Press.

    Google Scholar 

  • Lillesand, T., Kiefer, R. W., & Chipman, J. (2008). Remote sensing and image interpretation. New York: Wiley.

    Google Scholar 

  • Lin, H.-T., & Lin, C.-J. (2003). A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Neural Computation, 1–32.

  • Mabulla, A. Z. P. (2001). Strategy for cultural heritage management (CHM) in Africa: A case study. African Archaeological Review, 17, 211–233.

    Article  Google Scholar 

  • MacDonald, K. (2013). Complex societies, urbanism, and trade in the Western Sahel. In P. Mitchell & P. Lane (Eds.), The Oxford handbook of African archaeology (pp. 829–844). Oxford: University of Oxford Press.

    Google Scholar 

  • Mansour, K., Mutanga, O., Everson, T., & Adam, E. (2012). Discriminating indicator grass species for rangeland degradation assessment using hyperspectral data resampled to AISA eagle resolution. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 56–65.

    Article  Google Scholar 

  • Manyanga, M. (2007). Resilient landscapes socio-environmental dynamics in the Shashi-Limpopo basin, Southern Zimbabwe C. AD 800 to the present. Uppsala: Societa Archaeologica Uppsaliensis.

  • Masini, N., & Lasaponara, R. (2007). Investigating the spectral capability of QuickBird data to detect archaeological remains buried under vegetated and not vegetated areas. Journal of Cultural Heritage, 8, 53–60.

    Article  Google Scholar 

  • Mason, R. J. (1968). Transvaal and Natal Iron Age settlement revealed by aerial photography and excavation. African Studies, 27, 167–180.

    Article  Google Scholar 

  • Mattingly, D. J., Lahr, M., Armitage, S., Barton, H., Dore, J., Drake, N., Foley, R., Merlo, S., Salem, M., & Stock, J. (2007). Desert migrations: People, environment and culture in the Libyan Sahara. Libyan Studies, 38, 115–156.

    Article  Google Scholar 

  • Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39, 2784–2817. https://doi.org/10.1080/01431161.2018.1433343.

    Article  Google Scholar 

  • McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22, 276–282.

    Article  Google Scholar 

  • McIntosh, S. K. (1993). Archaeological heritage management and site inventory systems in Africa. Journal of Field Archaeology, 20, 500–504.

    Article  Google Scholar 

  • McIntosh, S. K., & McIntosh, R. J. (1993). Field survey in the tumulus zone of Senegal. African Archaeological Review, 11, 73–107.

    Article  Google Scholar 

  • Melillos, M., Themistocleous, K., Agapiou, A., Michaelides, S., & Hadjimitsis, D. G. (2018). Detecting underground structures in Cyprus using field spectroscopy. Proc. SPIE 10773, Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018), 107730A (6 August 2018). https://doi.org/10.1117/12.2324270

  • Metternicht, G., Zinck, J. A., Blanco, P. D., & Del Valle, H. F. (2010). Remote sensing of land degradation: Experiences from Latin America and the Caribbean. Journal of Environmental Quality, 39, 42–61.

    Article  Google Scholar 

  • Meyer, A. (2000). K2 and Mapungubwe. Goodwin Series, 8, 4–13.

    Article  Google Scholar 

  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.-C., Lin, C.-C., & Meyer, M. D. (2017). Package ‘e1071.’

  • Mitchell, P. (2013). Early farming communities of southern and south-Central Africa. In P. Mitchell & P. Lane (Eds.), The Oxford handbook of African archaeology (pp. 657–670). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Mothulatshipi, S. M. (2008). Landscape archaeology of the later farming communities of the Shashe Limpopo Basin, eastern Botswana: Land use diversity and human behavior. PhD Dissertation, University of Edinburgh.

  • Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247–259.

    Article  Google Scholar 

  • Mureriwa, N., Adam, E., Sahu, A., & Tesfamichael, S. (2016). Examining the spectral separability of Prosopis glandulosa from co-existent species using field spectral measurement and guided regularized random forest. Remote Sensing, 8, 144.

    Article  Google Scholar 

  • Musyoki, A., Thifhulufhelwi, R., & Murungweni, F. M. (2016). The impact of and responses to flooding in Thulamela Municipality, Limpopo Province South Africa. Jàmbá: Journal of Disaster Risk Studies, 8. https://doi.org/10.4102/jamba.v8i2.166.

  • Mutanga, O., Adam, E., & Cho, M. A. (2012). High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18, 399–406.

    Article  Google Scholar 

  • Mutanga, O., Adam, E., Adjorlolo, C., & Abdel-Rahman, E. M. (2015). Evaluating the robustness of models developed from field spectral data in predicting African grass foliar nitrogen concentration using WorldView-2 image as an independent test dataset. International Journal of Applied Earth Observation and Geoinformation, 34, 178–187.

    Article  Google Scholar 

  • Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng, Q. (2011). Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, 115, 1145–1161.

    Article  Google Scholar 

  • Nawar, S., Buddenbaum, H., Hill, J., & Kozak, J. (2014). Modeling and mapping of soil salinity with reflectance spectroscopy and landsat data using two quantitative methods (PLSR and MARS). Remote Sensing, 6, 10813–10834.

    Article  Google Scholar 

  • Nienaber, W. C., Keough, N., Steyn, M., & Meiring, J. H. (2008). Reburial of the Mapungubwe human remains: An overview of process and procedure. The South African Archaeological Bulletin, 63, 164–169. https://doi.org/10.2307/20475012.

    Article  Google Scholar 

  • Nocita, M., Stevens, A., Toth, G., Panagos, P., van Wesemael, B., & Montanarella, L. (2014). Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biology and Biochemistry, 68, 337–347.

    Article  Google Scholar 

  • Noi, P. T., & Kappas, M. (2018). Comparison of random Forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors, 18, 18. https://doi.org/10.3390/s18010018.

    Article  Google Scholar 

  • Ogen, Y., Goldshleger, N., & Ben-Dor, E. (2017). 3D spectral analysis in the VNIR–SWIR spectral region as a tool for soil classification. Geoderma, 302, 100–110.

    Article  Google Scholar 

  • Oonk, S., Slomp, C. P., Huisman, D. J., & Vriend, S. P. (2009). Geochemical and mineralogical investigation of domestic archaeological soil features at the Tiel-Passewaaij site, the Netherlands. Journal of Geochemical Exploration, 101, 155–165.

    Article  Google Scholar 

  • Opitz, R., & Herrmann, J. (2018). Recent trends and long-standing problems in archaeological remote sensing. Journal of Computer Applications in Archaeology, 1, 19–41. https://doi.org/10.5334/jcaa.11.

    Article  Google Scholar 

  • Oumar, Z., & Mutanga, O. (2010). Predicting plant water content in Eucalyptus grandis forest stands in KwaZulu-Natal, South Africa using field spectra resampled to the Sumbandila satellite sensor. International Journal of Applied Earth Observation and Geoinformation, 12, 158–164. https://doi.org/10.1016/j.jag.2010.02.002.

    Article  Google Scholar 

  • Pal, M., & Mather, P. M. (2003). An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86, 554–565. https://doi.org/10.1016/S0034-4257(03)00132-9.

    Article  Google Scholar 

  • Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26, 1007–1011.

    Article  Google Scholar 

  • Parcak, S. H. (2007). Satellite remote sensing methods for monitoring archaeological tells in the Middle East. Journal of Field Archaeology, 32, 65–81.

    Article  Google Scholar 

  • Parcak, S. H. (2015). Archaeological looting in Egypt: A geospatial view (case studies from Saqqara, Lisht, and el Hibeh). Near Eastern Archaeology, 78, 196–203.

    Article  Google Scholar 

  • Pelletier, C., Valero, S., Inglada, J., Champion, N., & Dedieu, G. (2016). Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas. Remote Sensing of Environment, 187, 156–168.

    Article  Google Scholar 

  • Peter, B. (2001). Vitrified dung in archaeological contexts: An experimental study on the process of its formation in the Mosu and Bobirwa areas. Pula: Botswana Journal of African Studies, 15, 125–143.

    Google Scholar 

  • Phillipson, D. W. (2005). African archaeology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Pwiti, G. (2005). Southern Africa and the east African coast. In A. B. Stahl (Ed.), African archaeology: A critical introduction (pp. 378–391). Malden: Blackwell Publishing.

    Google Scholar 

  • Reeves, D. M. (1936). Aerial photography and archaeology. American Antiquity, 2, 102. https://doi.org/10.2307/275881.

    Article  Google Scholar 

  • Reid, S. H. (2016). Satellite remote sensing of archaeological vegetation signatures in coastal West Africa. African Archaeological Review, 33, 163–182.

    Article  Google Scholar 

  • Reid, A., & Segobye, A. (2000). Politics, society and trade on the eastern margins of the Kalahari. Goodwin Series, 8, 58–68.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., & Chica-Rivas, M. (2014). Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and digital terrain models. International Journal of Digital Earth, 7, 492–509. https://doi.org/10.1080/17538947.2012.748848.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104.

    Article  Google Scholar 

  • Rosenfield, G. H., & Fitzpatrick-Lins, K. (1986). A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering and Remote Sensing, 52, 223–227.

    Google Scholar 

  • Sadr, K. (2016). The impact of coder reliability on reconstructing archaeological settlement patterns from satellite imagery: A case study from South Africa. Archaeological Prospection, 23, 45–54.

    Article  Google Scholar 

  • Sadr, K., & Rodier, X. (2012). Google Earth, GIS and stone-walled structures in southern Gauteng, South Africa. Journal of Archaeological Science, 39, 1034–1042.

    Article  Google Scholar 

  • Schmidt, P. R., & McIntosh, R. J. (Eds.). (1996). Plundering Africa’s past. Bloomington: Indiana University Press.

    Google Scholar 

  • Schmidt, K. S., & Skidmore, A. K. (2003). Spectral discrimination of vegetation types in a coastal wetland. Remote Sensing of Environment, 85, 92–108.

    Article  Google Scholar 

  • Schuetter, J., Goel, P., McCorriston, J., Park, J., Senn, M., & Harrower, M. (2013). Autodetection of ancient Arabian tombs in high-resolution satellite imagery. International Journal of Remote Sensing, 34, 6611–6635. https://doi.org/10.1080/01431161.2013.802054.

    Article  Google Scholar 

  • Sesnie, S. E., Finegan, B., Gessler, P. E., Thessler, S., Bendana, Z. R., & Smith, A. M. S. (2010). The multispectral separability of Costa Rican rainforest types with support vector machines and Random Forest decision trees. International Journal of Remote Sensing, 31, 2885–2909. https://doi.org/10.1080/01431160903140803.

    Article  Google Scholar 

  • Shao, Y., & Lunetta, R. S. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing, 70, 78–87.

    Article  Google Scholar 

  • Sharafi, S., Fouladvand, S., Simpson, I., & Alvarez, J. A. B. (2016). Application of pattern recognition in detection of buried archaeological sites based on analysing environmental variables, Khorramabad Plain, West Iran. Journal of Archaeological Science: Reports, 8, 206–215. https://doi.org/10.1016/j.jasrep.2016.06.024.

    Article  Google Scholar 

  • Shaw, T., Andah, B., Okpoko, A., & Sinclair, P. (Eds.). (1993). The archaeology of Africa: Food, metals and towns. London: Routledge.

    Google Scholar 

  • Sibanda, M., Mutanga, O., & Rouget, M. (2016). Discriminating rangeland management practices using simulated hyspIRI, landsat 8 OLI, sentinel 2 MSI, and VENμs spectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9, 3957–3969.

    Article  Google Scholar 

  • Smith, B. (2012). Helping to defend Africa’s heritage: The African archaeological conservation advisory committee of the PanAfrican archaeological association. Azania: Archaeological Research in Africa, 47, 379–380. https://doi.org/10.1080/0067270X.2012.711574.

    Article  Google Scholar 

  • Sørensen, L. K., & Dalsgaard, S. (2005). Determination of clay and other soil properties by near infrared spectroscopy. Soil Science Society of America Journal, 69, 159–167.

    Article  Google Scholar 

  • Stahl, A. B. (1994). Innovation, diffusion, and culture contact: The Holocene archaeology of Ghana. Journal of World Prehistory, 8, 51–112.

    Article  Google Scholar 

  • Stevens, A., Udelhoven, T., Denis, A., Tychon, B., Lioy, R., Hoffmann, L., & Van Wesemael, B. (2010). Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy. Geoderma, 158, 32–45.

    Article  Google Scholar 

  • Thabeng, O. L., Merlo, S., & Adam, E. (2019). High-resolution remote sensing and advanced classification techniques for the prospection of archaeological sites’ markers: The case of dung deposits in the Shashi-Limpopo Confluence area (southern Africa). Journal of Archaeological Science, 102, 48–60. https://doi.org/10.1016/j.jas.2018.12.003.

    Article  Google Scholar 

  • Thy, P., Segobye, A. K., & Ming, D. W. (1995). Implications of prehistoric glassy biomass slag from east-Central Botswana. Journal of Archaeological Science, 22, 629–637.

    Article  Google Scholar 

  • Ustuner, M., Sanli, F. B., & Dixon, B. (2015). Application of support vector machines for landuse classification using high-resolution RapidEye images: A sensitivity analysis. European Journal of Remote Sensing, 48, 403–422.

    Article  Google Scholar 

  • Verhagen, P., & Whitley, T. G. (2012). Integrating archaeological theory and predictive modeling: A live report from the scene. Journal of Archaeological Method and Theory, 19, 49–100. https://doi.org/10.1007/s10816-011-9102-7.

    Article  Google Scholar 

  • Verrelst, J., Rivera, J. P., Moreno, J., & Camps-Valls, G. (2013). Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval. ISPRS Journal of Photogrammetry and Remote Sensing, 86, 157–167. https://doi.org/10.1016/j.isprsjprs.2013.09.012.

    Article  Google Scholar 

  • Vogel, J. C., & Calabrese, J. A. (2000). Dating of the Leokwe Hill site and implications for the regional chronology. Goodwin Series, 8, 47–50.

    Article  Google Scholar 

  • Wei, C.-L., Rowe, G. T., Escobar-Briones, E., Boetius, A., Soltwedel, T., Caley, M. J., Soliman, Y., Huettmann, F., Qu, F., & Yu, Z. (2010). Global patterns and predictions of seafloor biomass using random forests. PLoS One, 5, e15323.

    Article  Google Scholar 

  • Wilson, C. A., Davidson, D. A., & Cresser, M. S. (2008). Multi-element soil analysis: An assessment of its potential as an aid to archaeological interpretation. Journal of Archaeological Science, 35, 412–424.

    Article  Google Scholar 

  • Wu, J., Liu, H., Duan, X., Ding, Y., Wu, H., Bai, Y., & Sun, X. (2008). Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature. Bioinformatics, 25, 30–35.

    Article  Google Scholar 

  • Yu, L., Liang, L., Wang, J., Zhao, Y., Cheng, Q., Hu, L., Liu, S., Yu, L., Wang, X., Zhu, P., Li, X., Xu, Y., Li, C., Fu, W., Li, X., Li, W., Liu, C., Cong, N., Zhang, H., Sun, F., Bi, X., Xin, Q., Li, D., Yan, D., Zhu, Z., Goodchild, M. F., & Gong, P. (2014). Meta-discoveries from a synthesis of satellite-based land-cover mapping research. International Journal of Remote Sensing, 35, 4573–4588. https://doi.org/10.1080/01431161.2014.930206.

    Article  Google Scholar 

  • Zhu, G., & Blumberg, D. G. (2002). Classification using ASTER data and SVM algorithms: The case study of Beer Sheva, Israel. Remote Sensing of Environment, 80, 233–240.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Inos Dhau, Tshekiso Kgosietsile, and Andani Gangashe for their assistance during data collection. We are also grateful to SANParks for allowing access to the Mapungubwe National Park and the DeBeers Group (through Duncan MacFadyen) for allowing access to the Venetia Nature Reserve and use of the research facility. The authors are also grateful to Prof. Thomas Huffman for availing his data and devoting his time to take us through the study area. Special thanks to Lesego Madisha (former archaeologist at SANParks, Mapungubwe) for her kind assistance and SANParks Cultural Heritage Manager Crispen Chauke and the Venetia Nature Reserve staff for their help.

Funding

This study was funded by the University of Botswana training department and the University of the Witwatersrand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaotse L. Thabeng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Archaeological time period: Tenth to nineteenth century AD

Country and region discussed: Botswana, South Africa, and Zimbabwe, Southern Africa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thabeng, O.L., Merlo, S. & Adam, E. From the Bottom Up: Assessing the Spectral Ability of Common Multispectral Sensors to Detect Surface Archaeological Deposits Using Field Spectrometry and Advanced Classifiers in the Shashi-Limpopo Confluence Area. Afr Archaeol Rev 37, 25–49 (2020). https://doi.org/10.1007/s10437-020-09372-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10437-020-09372-z

Keywords

Navigation