Skip to main content
Log in

Dynamic portfolio selection with mispricing and model ambiguity

  • Research Article
  • Published:
Annals of Finance Aims and scope Submit manuscript

Abstract

We investigate optimal portfolio selection problems with mispricing and model ambiguity under a financial market which contains a pair of mispriced stocks. We assume that the dynamics of the pair satisfies a “cointegrated system” advanced by Liu and Timmermann in a 2013 manuscript. The investor hopes to exploit the temporary mispricing by using a portfolio strategy under a utility function framework. Furthermore, she is ambiguity-averse and has a specific preference for model ambiguity robustness. The explicit solution for such a robust optimal strategy, and its value function, are derived. We analyze these robust strategies with mispricing in two cases: observed and unobserved mean-reverting stochastic risk premium. We show that the mispricing and model ambiguity have completely distinct impacts on the robust optimal portfolio selection, by comparing the utility losses. We also find that the ambiguity-averse investor who ignores the mispricing or the model ambiguity, suffers a substantially larger utility loss if the risk premium is unobserved, compared to when it is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A function \(h:[0,T] \times \mathbb {R}^k\rightarrow \mathbb {R}^l\) is said to satisfy the linear growth condition to \(x\) if \(\Vert h(t,x) \Vert \le K(1+\Vert x \Vert )\) for some \(K>0\).

  2. Changes for each stock will be analyzed in Sect. 4 for a more complex and realistic situation with an MR risk premium.

  3. This independence assumption is only for expositional simplicity. Allowing for correlations is a straightforward extension.

References

  • Anderson, E.L., Hansen, L., Sargent, T.: Robustness detection and the price of risk. Working paper, University of Chicago (2000)

  • Anderson, E., Hansen, L., Sargent, T.: A semigroups for model specification, robustness, price of risk, and model detection. J Eur Econ Assoc 1, 68–123 (2003)

    Article  Google Scholar 

  • Bensoussan, A.: Stochastic Control of Partially Observable Systems. Cambridge: Cambridge University Press (1992)

  • Branger, N., Larsen, L.S., Munk, C.: Robust portfolio choice with ambiguity and learning about return predictability. J Bank Financ 37, 1397–1411 (2013)

    Article  Google Scholar 

  • Chacko, G., Viceira, L.M.: Dynamic consumption and portfolio choice with stochastic volatility in incomplete markets. Rev Financ Stud 8, 1369–1402 (2005)

    Article  Google Scholar 

  • Cochrane, J.: Asset Pricing. Princeton, NJ: Princeton University Press (2001)

  • Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations, Wiley Series in Probability and Statistics. New York: Wiley (1997)

  • Froot, K.A., Dabora, E.M.: How are stock prices affected by the location of trade? J Financ Econ 53, 189–216 (1999)

    Article  Google Scholar 

  • Hansen, L., Sargent, T.: Robust control and model uncertainty. Am Econ Rev 91, 60–66 (2001)

    Article  Google Scholar 

  • Honda, T., Kamimura, S.: On the verification theorem of dynamic portfolio-consumption problems with stochastic market price of risk. Asia-Pacific Finan Markets 18, 151–166 (2011)

    Article  Google Scholar 

  • Jurek, J.W., Yang, H.: Dynamic portfolio selection in arbitrage. Working paper, Harvard University (2006)

  • Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. J Basic Eng 83, 95–108 (1961)

    Article  Google Scholar 

  • Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Berlin: Springer (1988)

  • Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes, vol. 2. Berlin: Springer (2001)

  • Liu, H.: Robust consumption and portfolio choice for time varying investment opportunities. Ann Financ 6, 435–454 (2010)

    Article  Google Scholar 

  • Liu, J., Longstaff, F.A.: Losing money on arbitrage: optimal dynamic portfolio choice in markets with arbitrage opportunities. Rev Financ Stud 17, 611–641 (2004)

    Article  Google Scholar 

  • Liu, J., Pan, J.: Dynamic derivative strategies. J Financ Econ 69, 401–430 (2003)

    Article  Google Scholar 

  • Liu, J., Timmermann, A.: Optimal convergence trade strategies. Rev Financ Stud 26, 1048–1086 (2013)

    Article  Google Scholar 

  • Maenhout, P.J.: Robust portfolio rules and asset pricing. Rev Financ Stud 17, 951–983 (2004)

    Article  Google Scholar 

  • Maenhout, P.J.: Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium. J Econ Theory 128, 136–163 (2006)

    Article  Google Scholar 

  • Maruyama, G.: Continuous Markov processes and stochastic equations. Rendiconti del Circolo Matematico di Palerm 4, 48–90 (1995)

    Article  Google Scholar 

  • Mataramvura, S., Øksendal, B.: Risk minimizing portfolios and HJBI equations for stochastic differential games. Stoch Int J Probab Stoch Process 80, 317–337 (2008)

    Article  Google Scholar 

  • Mitchell, M., Pulvino, T.: Characteristics of risk and return in risk arbitrage. J Financ 56, 2135–2175 (2001)

    Article  Google Scholar 

  • Munk, C., Rubtsov, A.: Portfolio management with stochastic interest rates and inflation ambiguity. Ann Financ (2013), Advance access, doi:10.1007/s10436-013-0238-1

  • Rapach, D., Zhou, G.: Chapter 6, Forecasting stock returns. In: Handbook of Economic Forecasting, vol. 2, pp. 328–383 (2013)

  • Shleifer, A., Vishny, R.W.: The limits of arbitrage. J Financ 52, 35–55 (1997)

    Article  Google Scholar 

  • Yi, B., Li, Z., Viens, F., Zeng, Y.: Robust optimal control for an insurer with reinsurance and investment under Hestons stochastic volatility model. Insur Math Econ 53, 601–614 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by National Science Foundation of China under Grant (No. 71201173), Humanity and Social Science Foundation of Ministry of Education of China (No. 12YJCZH267), Distinguished Young Talents in Higher Education of Guangdong of China (2012WYM-001) and Fundamental Research Funds for the Central Universities (13wkpy28). The authors thank the referee for comments and suggestions which improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederi Viens.

Appendices

Appendix 1: The Proof of Propositions 1 and 2

To solve problem (13), we conjecture the corresponding value function has the structure (16). Inserting this structure into the HJB equation (15), by the first-order conditions, the functions \(h_m^{*},\, h^{*},\, h_1 ^{*}\) and \(h_2 ^{*}\) which realize the minimum in (15) are given by

$$\begin{aligned}&h^{*}_m=-u \sigma _m \pi _f, \quad h^{*}=-(\pi _1+\pi _2)u \sigma , \\&h^{*}_1 =-b \pi _1 u-N x b u/(1-\gamma ), \quad h^* _2=Nx b u/(1-\gamma )-b \pi _2 u. \end{aligned}$$

Substituting the above expressions for \(h_m^{*},\, h^{*}, \,h_1 ^{*}\) and \(h_2 ^{*}\) into Eq. (15), by first-order conditions, we can achieve the expression for the optimal strategy \(\pi ^*\) shown in (19)–(21). Plugging \(\pi ^*\) into (15) implies

$$\begin{aligned}&\Bigg (\frac{1}{2(1-\gamma )}N_t\!+\! \frac{1\!-\!\gamma -u}{(\gamma +u)(1-\gamma )^2}b^2 N^2-\frac{\lambda _1\!+\!\lambda _2}{(1-\gamma )(\gamma \!+\!u)}N\\&\quad \!+\!\frac{(b^2\!+\!\sigma ^2)(\lambda _1^2+\lambda _2 ^2)\!+\!2 \sigma ^2\lambda _1 \lambda _2}{2(\gamma +u)b^2(2\sigma ^2 \!+\!b^2)}\Bigg )x^2\!+\!\left( \frac{1}{1-\gamma }G_t\!+\!\frac{b^2N}{1\!-\!\gamma } \!+\!\frac{\mu _m^2}{2(\gamma +u)\sigma _m^2}\!+\!r\right) \!=\!0 \end{aligned}$$

The above equation is ensured if the following equations are satisfied:

$$\begin{aligned}&\frac{1}{2(1-\gamma )}N_t+ \frac{1-\gamma -u}{(\gamma +u)(1-\gamma )^2}b^2 N^2-\frac{\lambda _1+\lambda _2}{(1-\gamma )(\gamma +u)}N \nonumber \\&\quad +\frac{(b^2+\sigma ^2)(\lambda _1^2+\lambda _2 ^2)+2 \sigma ^2\lambda _1 \lambda _2}{2(\gamma +u)b^2(2\sigma ^2 +b^2)}=0, \end{aligned}$$
(67)
$$\begin{aligned}&\frac{1}{1-\gamma }G_t+\frac{b^2N}{1-\gamma }+\frac{\mu _m^2}{2(\gamma +u) \sigma _m^2}+r=0. \end{aligned}$$
(68)

One can easily verify that expressions (17) and (18) are the solutions to the above two equations respectively. Moreover, inserting the specific expressions for \(k_1,\, k_2\) and \(k_3\) to (18), \(\gamma \) would be eliminated in expressions (20) and (21), which implies Proposition 2.

Appendix 2: The proof of Proposition 3

To solve the HJB equation (30), we conjecture the solution has the structure (31). Inserting (31) to (30), by the first-order condition, we acquire

$$\begin{aligned} \begin{aligned}&h^{*}=-(\pi _1+\pi _2)u \sigma ,\\&h_a^{*}=-\frac{\sigma _a u}{1-\gamma }(A_1 a+A_2+B_3 x),\\&h^{*}_1 =-b \pi _1 u-(B_1 x+B_3 a) b u/(1-\gamma ), \\&h_2^{*}=(B_1 x+B_3a) bu/(1-\gamma )-b \pi _2 u. \end{aligned} \end{aligned}$$
(69)

Parallel to the proof of Proposition 1, we substitute the above expressions in the HJB equation (30). By the first-order condition, calculation yields an optimal strategy \(\pi ^*=(\pi ^*_1, \pi _2 ^*)\) shown in (32)–(33). Plugging the optimal strategy into (30), the right side of Eq. (30) becomes an affine function of \(a^2,\, a,\, x^2\) and \(ax\). The equation has to be satisfied for all values of \(a\) and \(x\), which leads to the following system of ODEs:

$$\begin{aligned} {A_1}_t+&\frac{4(1-\gamma )}{\varGamma (2\sigma ^2+b^2)}-\varGamma (1-\gamma ) \Bigg [\frac{4 \sigma ^2}{\varGamma ^2(2\sigma ^2+b^2)^2}+b^2 \left( \frac{1}{\varGamma (2\sigma ^2+b^2)}-\frac{\varGamma _1 B_3}{\varGamma }\right) ^2 \nonumber \\&+b^2\left( \frac{1}{\varGamma (2\sigma ^2+b^2)}+\frac{\varGamma _1 B_3}{\varGamma }\right) ^2\Bigg ] +(1-\gamma )\frac{4 b^2 \varGamma _1 ^2 B_3 ^2}{\varGamma }\nonumber \\&+2 b^2 B_3 ^2 \varGamma _1+\sigma _a ^2 A_1 ^2 \varGamma _1-2\kappa A_1=0, \end{aligned}$$
(70)
$$\begin{aligned} {A_2}_t+&\sigma _a ^2 \varGamma _1 A_1 A_2+ \kappa (A_1 \theta -A_2)=0, \end{aligned}$$
(71)
$$\begin{aligned} {A_0}_t+&(1-\gamma ) \tilde{r} + b^2 B_1+\frac{1}{2} \sigma _a ^2 \varGamma _1 A_2 ^2+\frac{1}{2} \sigma _a ^2 A_1+\kappa A_2 \theta =0,\end{aligned}$$
(72)
$$\begin{aligned} {B_1}_t+&(1-\gamma )\Bigg [\frac{(\lambda _2-\lambda _1)^2}{\varGamma (2\sigma ^2+b^2)} +\frac{(\lambda _1+\lambda _2)^2}{\varGamma b^2}-\frac{2 \varGamma _1 B_1 (\lambda _1 +\lambda _2)}{\varGamma }- \frac{\sigma ^2(\lambda _2-\lambda _1)^2}{\varGamma (2\sigma ^2+b^2)^2} \nonumber \\&-\varGamma b^2 \left( \left( \frac{\lambda _2-\lambda _1}{2\varGamma (2\sigma ^2+b^2)}- \frac{\lambda _1+\lambda _2}{2 \varGamma b^2}+\frac{\varGamma _1 B_1}{\varGamma } \right) ^2\right. \nonumber \\&\left. +\left( \frac{\lambda _2-\lambda _1}{2\varGamma (2\sigma ^2+b^2)} +\frac{\lambda _1+\lambda _2}{2\varGamma b^2}-\frac{\varGamma _1 B_1}{\varGamma }\right) ^2 \right) \nonumber \\&+2 \varGamma _1 B_1 \frac{2 \varGamma _1 B_1-(\lambda _1+\lambda _2)}{\varGamma b^2}\Bigg ]+2b^2 \varGamma _1 B_1 ^2+ \sigma _a ^2 \varGamma _1 B_3 ^2-2 (\lambda _1+\lambda _2) B_1=0,\end{aligned}$$
(73)
$$\begin{aligned} {B_3}_t+&(1-\gamma ) \Bigg \{\frac{\lambda _2-\lambda _1}{\varGamma (2\sigma ^2+b^2)}-\frac{\varGamma _1 B_3(\lambda _1+\lambda _2)}{\varGamma }+\frac{\lambda _2-\lambda _1}{\varGamma (2\sigma ^2+b^2)} -\frac{2\sigma ^2 (\lambda _2-\lambda _1)}{\varGamma (2\sigma ^2+b^2)^2} \nonumber \\&\qquad \quad \qquad -b^2 \left[ \frac{2(\lambda _2-\lambda _1)}{\varGamma (2\sigma ^2+b^2)^2}+ 4 \varGamma _1 B_3 \left( \frac{\lambda _1+\lambda _2}{2\varGamma b^2}- \frac{\varGamma _1 B_1}{\varGamma }\right) \right] \nonumber \\&\qquad \quad \qquad +b^2 \varGamma _1 \left( \frac{4 \varGamma _1 B_1 B_3}{\varGamma }-\frac{(\lambda _1+\lambda _2) B_3}{\varGamma b^2}\right) \Bigg \} \nonumber \\&\qquad \qquad \quad + 2\varGamma _1 b^2 B_1 B_3 + \sigma _a ^2 \varGamma _1 A_1 B_3-(\lambda _1+\lambda _2)B_3-\kappa B_3=0, \end{aligned}$$
(74)

with terminal conditions \(A_1(T)=A_2(T)=A_0(T)=B_1(T)=B_3(T)=0\).

Appendix 3: The Proof of Proposition 4

To simplify the calculation, we define a new Brownian motion \(\hat{Z}_3\) under \(P\) as

$$\begin{aligned} d\hat{Z}_3=\frac{\sigma }{\sqrt{\sigma ^2+b^2}} d\hat{Z}(t)+ \frac{b}{\sqrt{\sigma ^2+b^2}} d\hat{Z_1}(t). \end{aligned}$$
(75)

Using standard Gaussian linear regression, the filtered model can be rewritten as

$$\begin{aligned} \frac{dP_1 (t)}{P_1 (t)}&=(\tilde{r}+\hat{a}(t)- \lambda _1 X(t))dt+\hat{\sigma } d \hat{Z}_3 (t), \end{aligned}$$
(76)
$$\begin{aligned} \frac{dP_2 (t)}{P_2 (t)}&=(\tilde{r}+\hat{a}(t)+ \lambda _2 X(t))dt +\rho \hat{\sigma } d\hat{Z_3}(t)+ \sqrt{1-\rho ^2} \hat{\sigma } d\hat{Z_4} (t), \end{aligned}$$
(77)
$$\begin{aligned} d\hat{a}(t)&=\kappa (\theta -\hat{a}(t))dt+\eta \left( \frac{1}{\hat{\sigma }}d\hat{Z_3}(t)+ \frac{1-\rho }{\rho _1 \hat{\sigma }} d\hat{Z_4}(t) \right) , \end{aligned}$$
(78)

where \(\hat{Z_4}\) is a Brownian motion under \(P\) independent of \(\hat{Z}_3\) and \(\hat{\sigma }= \sqrt{\sigma ^2+b^2},\, \eta \) is given by (38) and \((\rho , \rho _1)=\left( \frac{\sigma ^2}{b^2+\sigma ^2}, \sqrt{\frac{b^2}{b^2+\sigma ^2}}\right) \). Based on Girsanov’s theorem, we define a new Brownian motions under \(Q\) as

$$\begin{aligned} d\hat{Z}_{3}^Q(t)= d\hat{Z}_{3}(t)-h_1 (t)dt, \quad d \hat{Z}_4 ^Q (t)= d\hat{Z}_4 (t)-h_2(t)dt. \end{aligned}$$

Applying the dynamic programming principle, the robust HJB equation for the filtered model can be derived as:

$$\begin{aligned}&\sup \limits _{\pi \in \varPi } \inf \limits _{\varphi \in \mathcal {H}} \Bigg \{J_t \!+\! w J_w \left[ \tilde{r}\!+\! (\lambda _2 \pi _2\!-\!\lambda _1 \pi _1) x \!+\!\hat{a} (\pi _1\!+\!\pi _2)\!+\! h_1 \hat{\sigma } (\pi _1\!+\!\rho \pi _2)\!+\!h_2 \pi _2 \rho _1 \hat{\sigma } \right] \nonumber \\&\quad \!+\, J_x \left( -(\lambda _1\!+\!\lambda _2)x(t)\!+ \!h_1 \hat{\sigma }(1\!-\!\rho )\!-\!h_2 \rho _1 \hat{\sigma } \right) \!+\!J_{\hat{a}} \left( \kappa (\theta -\hat{a})\!+\!h_1\frac{\eta }{\hat{\sigma }}\!+\! h_2 \frac{\eta (1-\rho )}{\rho _1 \hat{\sigma }}\right) \nonumber \\&\quad +\,\frac{1}{2} w^2 J_{ww} \hat{\sigma }^2(\pi _1^2+\pi _2^2+2 \rho \pi _1 \pi _2)+ w J_{wx} \hat{\sigma }(1-\rho )(\pi _1-\pi _2) + \eta (\pi _1+\pi _2)J_{w \hat{a}}\nonumber \\&\quad \!+\, J_{xx}\hat{\sigma }^2(1-\rho )\!+\! \frac{\eta ^2(1-\rho )}{\rho _1^2 \hat{\sigma }^2}J_{\hat{a} \hat{a}} \!+\!\frac{(1\!-\!\gamma )J}{2u}\left( h_1 ^2+h_2 ^2\right) \Bigg \}\!=\!0. \end{aligned}$$
(79)

Substituting the conjecture of the value function (43) into (79), the first-order condition yields

$$\begin{aligned} h^* _1=&-\frac{\eta u}{(1-\gamma ) \hat{\sigma }}(\hat{A}_1 \hat{a} +\hat{A}_2+\hat{B}_3 x)- \hat{\sigma }(\pi _1+\rho \pi _2)u \nonumber \\&-\frac{\hat{\sigma }(1-\rho ) u}{1-\gamma } (\hat{B}_1 x+\hat{B}_2+\hat{B}_3 \hat{a}), \end{aligned}$$
(80)
$$\begin{aligned} h^* _2=&-\frac{\eta u (1-\rho )}{(1-\gamma ) \hat{\sigma } \rho _1}(\hat{A}_1 \hat{a} +\hat{A}_2+\hat{B}_3 x)- \hat{\sigma } \rho _1 \pi _2 u \nonumber \\&+\frac{\rho _1 \hat{\sigma } u}{1-\gamma } (\hat{B}_1 x+\hat{B}_2+\hat{B}_3 \hat{a}), \end{aligned}$$
(81)

and an optimal strategy shown in (44)–(45). Plugging these into (79), it turns out that our conjecture (43) indeed solves the HJB equation if the functions satisfy the following ODE system:

$$\begin{aligned} \hat{{A}_1}_t+\,&\frac{2(1+\eta \varGamma _1 \hat{A}_1)^2}{\hat{\sigma }^2(1+\rho )\varGamma }(1-\gamma )\!-\! 2 \kappa \hat{A}_1\!+\! 2 \hat{\sigma } ^2 (1\!-\!\rho ) (1\!-\!\gamma )\frac{\varGamma _1 ^2}{\varGamma }\hat{B}_3 ^2\!+\!2 \hat{\sigma }^2 \varGamma _1 (1\!-\!\rho ) \hat{B}_3 ^2 \nonumber \\ \!+\,&\,\frac{2(1-\rho )\eta ^2 \varGamma _1}{\rho _1 ^2 \hat{\sigma }^2} \hat{A}_1 ^2=0, \end{aligned}$$
(82)
$$\begin{aligned} \hat{ A_2}_t+&\kappa \theta \hat{A}_1 -\kappa \hat{A}_2+2(1-\rho )(1-\gamma )\hat{\sigma }^2\frac{\varGamma _1 ^2}{\varGamma } \hat{B}_2 \hat{B}_3 + 2 \eta \varGamma _1 (1-\gamma ) \frac{\hat{A}_2+\eta \varGamma _1 \hat{A}_1 \hat{A}_2}{\hat{\sigma }^2 (1+\rho ) \varGamma } \nonumber \\ +&\,2 \hat{\sigma }^2 (1-\rho ) \varGamma _1 \hat{B}_2 \hat{B}_3 + \frac{2(1-\rho ) \eta ^2 \varGamma _1}{\rho _1^2 \hat{\sigma }^2} \hat{A}_1 \hat{A}_2=0,\end{aligned}$$
(83)
$$\begin{aligned} \hat{ A_0}_t +\,&\tilde{r}(1-\gamma )+ \kappa \theta \hat{A}_2 \!+\!\hat{\sigma }^2 (1-\rho )\frac{\varGamma _1^2}{\varGamma } \hat{B}_2 ^2\!+\!(1-\gamma )\frac{(\eta \varGamma _1 \hat{A}_2)^2}{\hat{\sigma }^2 (1\!+\!\rho ) \varGamma } \nonumber \\ +&\hat{B}_2 ^2 \hat{\sigma } ^2 \varGamma _1 (1-\rho )\!+ \hat{\sigma } ^2 (1-\rho ) \hat{B}_1+\frac{(1-\rho )\eta ^2 \varGamma _1 }{\rho _1 ^2 \hat{\sigma }^2}\hat{A}_2 ^2+\frac{\eta ^2 (1-\rho )}{\rho _1 ^2 \hat{\sigma } ^2} \hat{A}_1=0, \end{aligned}$$
(84)
$$\begin{aligned} \hat{B_1}_t +&\frac{(\lambda _2 -\lambda _1)^2}{2 \hat{\sigma }^2(1+\rho )\varGamma }(1-\gamma )+\frac{(\lambda _1+\lambda _2)^2}{2\hat{\sigma } ^2 (1-\rho )\varGamma } (1-\gamma )+\frac{2 \hat{\sigma } ^2 (1-\rho )\varGamma _1 ^2 \hat{B}_1 ^2}{\varGamma }(1-\gamma ) \nonumber \\ \!-\,&\frac{2 \varGamma _1 \hat{B}_1 (\lambda _1\!+\!\lambda _2)}{\varGamma }(1-\gamma )+\frac{2\eta ^2 \varGamma _1 ^2 \hat{B}_3 ^2}{\hat{\sigma }^2 (1+\rho ) \varGamma } (1-\gamma )+2 \hat{\sigma }^2 \varGamma _1 (1-\rho )\hat{B}_1 ^2 \nonumber \\ +\,&2\varGamma _1 \frac{(1-\rho )\eta ^2}{\rho _1 ^2 \hat{\sigma } ^2}\hat{B}_3^2=0, \end{aligned}$$
(85)
$$\begin{aligned} \hat{B_2}_t-&(\lambda _1+\lambda _2)+\kappa \theta \hat{B}_3+ 2 \hat{\sigma } ^2 (1-\gamma )(1-\rho )\frac{\varGamma _1^2}{\varGamma } \hat{B}_1 \hat{B}_2- (\lambda _1+\lambda _2)(1-\gamma )\frac{\varGamma _1}{\varGamma }\hat{B}_2 \nonumber \\ +\,&(1-\gamma )\frac{2\eta ^2 \varGamma _1 ^2 \hat{A}_2 \hat{B}_3}{\hat{\sigma } ^2(1+\rho )\varGamma }+2 \hat{\sigma } ^2 (1-\rho ) \varGamma _1 \hat{B}_1 \hat{B}_2+ \frac{2(1-\rho )\eta ^2 \varGamma _1}{\rho _1 ^2 \hat{\sigma } ^2}\hat{A}_2 \hat{B}_3 \nonumber \\ +\,&(1-\gamma )\frac{\eta \varGamma _1 (\lambda _2-\lambda _1)}{\hat{\sigma } ^2 (1+\rho ) \varGamma }\hat{A}_2 =0,\end{aligned}$$
(86)
$$\begin{aligned} \hat{B_3}_t-&\kappa \hat{B}_3+2(1-\gamma )(1-\rho )\hat{\sigma }^2 \frac{\varGamma _1 ^2}{\varGamma } \hat{B}_1 \hat{B}_3 -(1-\gamma )(\lambda _1+\lambda _2)\frac{\varGamma _1}{\varGamma } \hat{B}_3 \nonumber \\ +&\,(1-\gamma )(1+\eta \varGamma _1 \hat{A}_1)\frac{\lambda _2-\lambda _1}{\hat{\sigma }^2 (1+\rho )\varGamma } +(1-\gamma )\frac{2\eta ^2\varGamma _1 ^2 \hat{A}_1 \hat{B}_3+2\eta \varGamma _1 \hat{B}_3}{\hat{\sigma }^2 (1+\rho ) \varGamma }\nonumber \\ +&2\hat{\sigma }^2(1-\rho )\varGamma _1 \hat{B}_1 \hat{B}_3+ \frac{2(1-\rho )\eta ^2 \varGamma _1}{\rho _1 ^2 \hat{\sigma }^2 } \hat{A}_1 \hat{B}_3=0, \end{aligned}$$
(87)

with terminal conditions \(\hat{A}_1(T)=\hat{A}_2(T)=\hat{A}_0(T)=\hat{B}_1(T)=\hat{B}_2(T)=\hat{B}_3(T)\) \(=0\).

Appendix 4

This section details the calculation of the four value functions under the strategies \(\pi ^{IM},\, \pi ^{IA},\, \pi ^{UIM}, \,\pi ^{UIA}\) in Section 5.3. We conjecture that the structures of value functions \(J^{IM}\) and \(J^{IA}\) are given by (57) and (60) for the observed case and (63) and (66) for unobserved case. Set \(\pi ^{IM}\) as an example, we hope to solve for the value function \(J^{IM}\) under the given strategy for ignoring mispricing \(\pi ^{IM}\). Inserting (55), (69) and (57) into HJB equation (30), we repeat the variables separation method similarly to “Appendix 2”. The following system of ODEs can be derived for (57):

$$\begin{aligned} \left( A_1 ^{IM}\right) _t&\!+\!\frac{4(1\!-!\gamma )}{\varGamma (2\sigma ^2\!+\!b^2)}\!-\!\varGamma (1\!-\!\gamma ) \Bigg [\frac{4 \sigma ^2}{\varGamma ^2(2\sigma ^2\!+\!b^2)^2}\!+\!b^2 \left( \frac{1}{\varGamma (2\sigma ^2\!+\!b^2)}-\frac{\varGamma _1 B_3}{\varGamma }\right) ^2 \nonumber \\&+b^2\left( \frac{1}{\varGamma (2\sigma ^2+b^2)}+\frac{\varGamma _1 B_3}{\varGamma }\right) ^2\Bigg ] +(1-\gamma )\frac{2 b^2 \varGamma _1 ^2 B_3 \left( B_3 ^{IM}\right) }{\varGamma } \nonumber \\&+2 b^2 \left( B_3 ^{IM}\right) ^2 \varGamma _1+\sigma _a ^2 \left( A_1 ^{IM}\right) ^2 \varGamma _1-2\kappa \left( A_1 ^{IM}\right) =0, \end{aligned}$$
(88)
$$\begin{aligned} \left( A_2^{IM} \right) _t&+ \sigma _a ^2 \varGamma _1 \left( A_1^{IM} \right) \left( A_2^{IM} \right) + \kappa \left[ \left( A_1^{IM} \right) \theta -\left( A_2^{IM} \right) \right] =0, \end{aligned}$$
(89)
$$\begin{aligned} \left( A_0^{IM} \right) _t&\!+\!(1\!-\!\gamma ) \tilde{r}\!+\!b^2 \left( B_1^{IM}\right) \!+\!\frac{1}{2} \sigma _a ^2 \varGamma _1 \left( A_2^{IM}\right) ^2\!+\!\frac{1}{2} \sigma _a ^2 \left( A_1^{IM}\right) +\kappa \theta \left( A_2^{IM}\right) =0,\end{aligned}$$
(90)
$$\begin{aligned} \left( B_1 ^{IM}\right) _t&+ 2b^2 \varGamma _1 \left( B_1 ^{IM}\right) ^2+ \sigma _a ^2 \varGamma _1 \left( B_3 ^{IM}\right) ^2-2 (\lambda _1+\lambda _2) \left( B_1 ^{IM}\right) =0,\end{aligned}$$
(91)
$$\begin{aligned} \left( B_3 ^{IM}\right) _t&+(1-\gamma ) \Bigg \{\frac{\lambda _2-\lambda _1}{\varGamma (2\sigma ^2+b^2)}-\frac{\varGamma _1 B_3 (\lambda _1\!+\!\lambda _2)}{\varGamma }\!+\! \frac{2 b^2 \varGamma _1 \left( B_1 ^{IM}\right) B_3}{\varGamma }\Bigg \} \nonumber \\&\!+\! 2\varGamma _1 b^2 \left( B_1 ^{IM}\right) \left( B_3 ^{IM}\right) \!+\! \sigma _a ^2 \varGamma _1 \left( A_1 ^{IM}\right) \left( B_3 ^{IM}\right) \nonumber \\&\!-\!(\lambda _1\!+\!\lambda _2) \left( B_3 ^{IM}\right) \!-\!\kappa \left( B_3 ^{IM}\right) \!=\!0, \end{aligned}$$
(92)

with terminal conditions \(A_1 ^{IM}(T)=A_2 ^{IM} (T)=A_0 ^{IM} (T)=B_1 ^{IM} (T)=B_3 ^{IM}(T)=0\) and \(A_1,\, A_2,\, A_3,\, B_1\) and \(B_3\) satisfy (70)–(74). Similarly, given the strategy \(\pi ^{IA}\), we obtain the following system of ODEs for the functions used in \(J^{IA}\) in (60).

$$\begin{aligned} \left( A_1^{IA} \right) _t&\!+\!\frac{4(1-\gamma )}{\gamma (2\sigma ^2\!+\!b^2)}\!-\!\varGamma (1-\gamma ) \Bigg [\frac{4 \sigma ^2}{\gamma ^2(2\sigma ^2+b^2)^2}+b^2 \left( \frac{1}{\gamma (2\sigma ^2+b^2)}-\frac{\gamma _1 B_3}{\gamma }\right) ^2 \nonumber \\&+b^2\left( \frac{1}{\gamma (2\sigma ^2+b^2)}+\frac{B_3}{\gamma }\right) ^2\Bigg ]+(1-\gamma )\frac{4 b^2 \varGamma _1 ^2 B_3 \left( B_3^{IA}\right) }{\varGamma } \nonumber \\&+2 b^2 \left( B_3^{IA}\right) ^2 \varGamma _1+\sigma _a ^2 \left( A_1^{IA} \right) ^2 \varGamma _1-2\kappa \left( A_1^{IA} \right) =0, \end{aligned}$$
(93)
$$\begin{aligned} \left( A_2^{IA} \right) _t&+ \sigma _a ^2 \varGamma _1 \left( A_1^{IA} \right) \left( A_2^{IA} \right) + \kappa \left[ \left( A_1^{IA} \right) \theta -\left( A_2^{IA} \right) \right] =0, \end{aligned}$$
(94)
$$\begin{aligned} \left( A_0^{IA} \right) _t&\!+\!(1-\gamma ) \tilde{r} \!+\! b^2 \left( B_1^{IA}\right) \!+\!\frac{1}{2} \sigma _a ^2 \varGamma _1 \left( A_2^{IA}\right) ^2\!+\!\frac{1}{2} \sigma _a ^2 \left( A_1^{IA}\right) +\kappa \theta \left( A_2^{IA}\right) =0,\end{aligned}$$
(95)
$$\begin{aligned} \left( B_1^{IA}\right) _t&+(1-\gamma )\Bigg \{\frac{(\lambda _2-\lambda _1)^2}{\gamma (2\sigma ^2+b^2)}+\frac{(\lambda _1+\lambda _2)^2}{\gamma b^2}-\frac{2 B_1 (\lambda _1+\lambda _2)}{\gamma }- \frac{\sigma ^2(\lambda _2-\lambda _1)^2}{\gamma (2\sigma ^2+b^2)^2} \nonumber \\&-\varGamma b^2 \left[ \left( \frac{\lambda _2-\lambda _1}{2\gamma (2\sigma ^2+b^2)}- \frac{\lambda _1+\lambda _2}{2 \gamma b^2}+\frac{\varGamma _1 B_1}{\gamma } \right) ^2 \right. \nonumber \\&\left. +\left( \frac{\lambda _2-\lambda _1}{2\gamma (2\sigma ^2+b^2)} +\frac{\lambda _1+\lambda _2}{2\gamma b^2}-\frac{\varGamma _1 B_1}{\gamma }\right) ^2 \right] \nonumber \\&+2 \varGamma _1 \left( B_1^{IA}\right) \frac{2 \varGamma _1 B_1-(\lambda _1+\lambda _2)}{\gamma b^2}\Bigg \}+2b^2 \varGamma _1 \left( B_1^{IA}\right) ^2\nonumber \\&+\sigma _a ^2 \varGamma _1 \left( B_3^{IA}\right) ^2-2 (\lambda _1+\lambda _2) \left( B_1^{IA}\right) =0,\end{aligned}$$
(96)
$$\begin{aligned} \left( B_3^{IA}\right) _t&+(1-\gamma ) \left\{ \frac{\lambda _2-\lambda _1}{\gamma (2\sigma ^2+b^2)}-\frac{B_3 (\lambda _1+\lambda _2)}{\gamma }+\frac{\lambda _2-\lambda _1}{\gamma (2\sigma ^2+b^2)} -\frac{2\sigma ^2 (\lambda _2-\lambda _1)}{\gamma (2\sigma ^2+b^2)^2} \right. \nonumber \\&-b^2 \varGamma \left[ \frac{2(\lambda _2-\lambda _1)}{\gamma (2\sigma ^2+b^2)^2}+ \frac{4 B_3}{\gamma } \left( \frac{\lambda _1+\lambda _2}{2\gamma b^2}- \frac{\varGamma _1 B_1}{\gamma }\right) \right] \nonumber \\&\left. +\,b^2 \varGamma _1 \left( \frac{2 \varGamma _1 B_1 \left( B_3^{IA}\right) +2 \varGamma _1 B_3 \left( B_1^{IA}\right) }{\gamma }-\frac{(\lambda _1+\lambda _2) B_3}{\gamma b^2}\right) \right\} \nonumber \\&\!\!+\! 2\varGamma _1 b^2 \left( B_1^{IA}\right) \left( B_3^{IA}\right) \! +\! \sigma _a ^2 \varGamma _1 \left( A_1^{IA}\right) \left( B_3^{IA}\right) \!\!-\!\!(\lambda _1\!+\!\lambda _2)\left( B_3^{IA}\right) \nonumber \\&-\kappa \left( B_3^{IA}\right) \!\!=\!\!0, \end{aligned}$$
(97)

with terminal conditions \(A_1 ^{IA}(T)=A_2 ^{IA} (T)=A_0 ^{IA} (T)=B_1 ^{IA} (T)=B_3 ^{IA}(T)=0\) and \(A_1,\, A_2,\, A_3,\, B_1\) and \(B_3\) satisfy (70)–(74). In the unobserved case, given the strategy \(\pi ^{UIM}\), the system of ODEs needed to express the function \(J^{UIM}\) in (63) is

$$\begin{aligned}&\left( \hat{A}_1^{UIM}\right) _t+ \frac{4(1+\eta \varGamma _1 \hat{A}_1)}{\hat{\sigma }^2(1+\rho )\varGamma }(1-\gamma ) +4 \eta \varGamma _1 \left( \hat{A}_1 ^{UIM}\right) \frac{(1+\eta \varGamma _1 \hat{A}_1)}{\hat{\sigma }^2(1+\rho )\varGamma }(1-\gamma )\nonumber \\&\quad +\, 2 \hat{\sigma } ^2 (1-\rho ) (1-\gamma )\frac{\varGamma _1 ^2}{\varGamma }\hat{B}_3 \left( \hat{B}_3 ^{UIM}\right) +2 \hat{\sigma }^2 \varGamma _1 (1-\rho ) \left( \hat{B}_3 ^{UIM}\right) ^2 \nonumber \\&\quad +\frac{2(1-\rho )\eta ^2 \varGamma _1}{\rho _1 ^2 \hat{\sigma }^2} \left( \hat{A}_1 ^{UIM}\right) ^2-\hat{\sigma }^2 \varGamma \left[ \left( \frac{(1+\eta \varGamma _1 \hat{A}_1)}{\hat{\sigma }^2(1+\rho )\varGamma }\right) ^2(1+\rho )\right. \nonumber \\&\quad \left. +\left( \frac{\hat{B}_3 \varGamma _1}{\varGamma }\right) ^2(1-\rho ) - 2 \kappa \left( \hat{A}_1 ^{UIM}\right) \right] =0,\end{aligned}$$
(98)
$$\begin{aligned}&\left( \hat{A}_2 ^{UIM}\right) _t+ (1-\gamma ) \frac{2\eta \hat{A}_2 \varGamma _1}{\hat{\sigma }^2 (1+\rho ) \varGamma }+ \kappa \theta \left( \hat{A}_1 ^{UIM}\right) -\kappa \left( \hat{A}_2^{UIM}\right) \nonumber \\&\quad +\,2(1-\rho )(1-\gamma )\hat{\sigma }^2 \frac{\varGamma _1 ^2}{\varGamma }\left[ \left( \hat{B}_2 ^{UIM}\right) \hat{B}_3 + \left( \hat{B}_3 ^{UIM}\right) \hat{B}_2 \right] \nonumber \\&\quad +\,2 \eta (1-\gamma )\frac{\varGamma _1}{\varGamma }\left[ \frac{1+\eta \hat{A}_1 \varGamma _1}{\hat{\sigma }^2 (1+\rho )} \left( \hat{A}_2^{UIM}\right) +\frac{2\eta \varGamma _1 \hat{A}_2}{\hat{\sigma }^2 (1+\rho )} \left( \hat{A}_1^{UIM}\right) \right] \nonumber \\&\quad +\, 2 \hat{\sigma }^2 (1-\rho )\varGamma _1 \left( \hat{B}_2 ^{UIM}\right) \left( \hat{B}_3 ^{UIM}\right) + \frac{2(1-\rho ) \eta ^2 \varGamma _1}{\rho _1^2 \hat{\sigma }^2} \left( \hat{A}_1 ^{UIM}\right) \left( \hat{A}_2 ^{UIM}\right) \nonumber \\&\quad -\frac{2(1+\eta \varGamma _1 \hat{A}_1)\eta \hat{A}_2 \varGamma _1}{\hat{\sigma } ^2 (1+\rho ) \varGamma }-2 (1-\rho )\hat{\sigma }^2 \frac{\hat{B}_2 \hat{B}_3 \varGamma _1 ^2}{\varGamma }=0,\end{aligned}$$
(99)
$$\begin{aligned}&\left( \hat{A}_0 ^{UIM}\right) _t + \tilde{r} (1-\gamma )+ \kappa \theta \left( \hat{A}_2^{UIM} \right) + \hat{\sigma }^2 (1-\rho )\frac{\varGamma _1^2}{\varGamma } \hat{B}_2 \hat{B}_2^{UIM} \nonumber \\&\quad +\, \hat{\sigma } ^2 (1-\rho ) \left( \hat{B}_1 ^{UIM}\right) +\frac{(1-\rho )\eta ^2 \varGamma _1 }{\rho _1 ^2 \hat{\sigma }^2} \left( \hat{A}_2 ^{UIM}\right) ^2+\frac{\eta ^2 (1-\rho )}{\rho _1 ^2 \hat{\sigma } ^2} \left( \hat{A}_1 ^{UIM}\right) \nonumber \\&\quad +\,\hat{\sigma } ^2 \varGamma _1 (1-\rho )\left( \hat{B}_2 ^{UIM}\right) ^2+(1-\gamma )\frac{2\eta ^2 \varGamma _1^2 \hat{A}_2}{\hat{\sigma }^2 (1+\rho ) \varGamma } \hat{A}_2 ^{UIM}\nonumber \\&\quad -\,\hat{\sigma } ^2 \varGamma \left[ \left( \frac{\hat{A}_2 \eta \varGamma _1}{\hat{\sigma } ^2 (1+\rho ) \varGamma }\right) ^2+\left( \frac{\hat{B}_2 \varGamma _1}{\varGamma }\right) ^2 (1-\rho ) \right] =0, \end{aligned}$$
(100)
$$\begin{aligned}&\left( \hat{B}_1 ^{UIM}\right) _t +2 \hat{\sigma }^2 \varGamma _1 (1-\rho )\left( \hat{B}_1 ^{UIM}\right) ^2 + 2\varGamma _1 \frac{(1-\rho )\eta ^2}{\rho _1 ^2 \hat{\sigma } ^2}\left( \hat{B}_3 ^{UIM}\right) ^2=0, \end{aligned}$$
(101)
$$\begin{aligned}&\left( \hat{B}_2 ^{UIM} \right) _t-(\lambda _1+\lambda _2)+\kappa \theta \left( \hat{B}_3 ^{UIM}\right) + 2 \hat{\sigma } ^2 (1-\gamma )(1-\rho )\frac{\varGamma _1^2}{\varGamma } \left( \hat{B}_1 ^{UIM} \right) \hat{B}_2 \nonumber \\&\quad -\,(\lambda _1+\lambda _2)(1-\gamma )\frac{\varGamma _1}{\varGamma }\hat{B}_2+ (1-\gamma )\frac{2 \eta ^2 \varGamma _1 ^2 \left( \hat{A}_2 ^{UIM} \right) \left( \hat{B}_3 ^{UIM} \right) }{\hat{\sigma } ^2(1+\rho )\varGamma } \nonumber \\&\quad +\,2 \hat{\sigma } ^2 (1-\rho ) \varGamma _1 \left( \hat{B}_1 ^{UIM} \right) \left( \hat{B}_2 ^{UIM} \right) + \frac{2(1-\rho )\eta ^2 \varGamma _1}{\rho _1 ^2 \hat{\sigma } ^2}\left( \hat{A}_2 ^{UIM} \right) \left( \hat{B}_3 ^{UIM} \right) \nonumber \\&\quad +\,(1-\gamma )\frac{\eta \varGamma _1 (\lambda _2-\lambda _1)}{\hat{\sigma } ^2 (1+\rho ) \varGamma }\hat{A}_2 =0,\end{aligned}$$
(102)
$$\begin{aligned}&\left( \hat{B}_3 ^{UIM} \right) _t-\kappa \left( \hat{B}_3 ^{UIM} \right) +2(1-\gamma )(1-\rho )\hat{\sigma }^2 \frac{\varGamma _1 ^2}{\varGamma } \left( \hat{B}_1 ^{UIM} \right) \hat{B}_3 -(1-\gamma )(\lambda _1+\lambda _2)\frac{\varGamma _1}{\varGamma } \hat{B}_3 \nonumber \\&\quad \!+\,(1\!-\!\gamma )(1\!+\!\eta \varGamma _1 \hat{A}_1)\frac{\lambda _2-\lambda _1}{\hat{\sigma }^2 (1+\rho )\varGamma } \!+\!(1-\gamma )\frac{2\eta ^2\varGamma _1 ^2 \hat{A}_1\!+\!2\eta \varGamma _1 }{\hat{\sigma }^2 (1+\rho ) \varGamma }\left( \hat{B}_3 ^{UIM} \right) \nonumber \\&\quad \!+\,2\hat{\sigma }^2(1\!-\!\rho )\varGamma _1 \left( \hat{B}_1 ^{UIM} \right) \left( \hat{B}_3 ^{UIM} \right) \!+\! \frac{2(1\!-\!\rho )\eta ^2 \varGamma _1}{\rho _1 ^2 \hat{\sigma }^2 } \left( \hat{A}_1 ^{UIM} \right) \left( \hat{B}_3 ^{UIM} \right) =0, \end{aligned}$$
(103)

with terminal conditions \(\hat{A}_1 ^{UIM}(T) =\hat{A}_2 ^{UIM}(T)=\hat{A}_0 ^{UIM}(T)=\hat{B}_1 ^{UIM}(T)=\hat{B}_2 ^{UIM}(T)=\hat{B}_3 ^{UIM}(T)=0\) and \(\hat{A}_1,\, \hat{A}_2\), \(\hat{A}_3\), \(\hat{B}_1\), \(\hat{B}_2\) and \(\hat{B}_3\) satisfy (82)–(87). Finally, again in the unobserved case, given the strategy \(\pi ^{UIA}\), the functions needed to express \(J^{UIA}\) in (66) solve the following system of ODEs:

$$\begin{aligned}&\left( \hat{A}_1^{UIA}\right) _t+ \frac{4(1+\eta \hat{A}_1)}{\hat{\sigma }^2(1+\rho )\gamma }(1-\gamma ) +4 \eta \varGamma _1 \left( \hat{A}_1 ^{UIA}\right) \frac{(1+\eta \hat{A}_1)}{\hat{\sigma }^2(1+\rho )\gamma }(1-\gamma )- 2 \kappa \left( \hat{A}_1 ^{UIA}\right) \nonumber \\&\quad +\, 2 \hat{\sigma } ^2 (1-\rho ) (1-\gamma )\frac{\varGamma _1}{\gamma }\hat{B}_3 \left( \hat{B}_3 ^{UIA}\right) +2 \hat{\sigma }^2 \varGamma _1 (1-\rho ) \left( \hat{B}_3 ^{UIA}\right) ^2 \nonumber \\&\quad +\,\frac{2(1-\rho )\eta ^2 \varGamma _1}{\rho _1 ^2 \hat{\sigma }^2} \left( \hat{A}_1 ^{UIA}\right) ^2-\hat{\sigma }^2 \varGamma \left[ \left( \frac{(1+\eta \hat{A}_1)}{\hat{\sigma }^2(1+\rho )\gamma }\right) ^2(1+\rho )+\left( \frac{\hat{B}_3 }{\gamma }\right) ^2(1-\rho )\right] =0,\nonumber \\ \end{aligned}$$
(104)
$$\begin{aligned}&\left( \hat{A}_2 ^{UIA}\right) _t+ (1-\gamma ) \frac{2\eta \hat{A}_2}{\hat{\sigma }^2 (1+\rho ) \gamma }+ \kappa \theta \left( \hat{A}_1 ^{UIA}\right) -\kappa \left( \hat{A}_2^{UIA}\right) \nonumber \\&\quad +\,2(1-\rho )(1-\gamma )\hat{\sigma }^2 \frac{\varGamma _1 }{\gamma }\left[ \left( \hat{B}_2 ^{UIA}\right) \hat{B}_3 + \left( \hat{B}_3 ^{UIA}\right) \hat{B}_2 \right] \nonumber \\&\quad +\,2 \eta (1-\gamma )\frac{\varGamma _1}{\gamma }\left[ \frac{1+\eta \hat{A}_1}{\hat{\sigma }^2 (1+\rho )} \left( \hat{A}_2^{UIA}\right) +\frac{2\eta \ \hat{A}_2}{\hat{\sigma }^2 (1+\rho )} \left( \hat{A}_1^{UIA}\right) \right] \nonumber \\&\quad +\, 2 \hat{\sigma }^2 (1-\rho )\varGamma _1 \left( \hat{B}_2 ^{UIA}\right) \left( \hat{B}_3 ^{UIA}\right) + \frac{2(1-\rho ) \eta ^2 \varGamma _1}{\rho _1^2 \hat{\sigma }^2} \left( \hat{A}_1 ^{UIA}\right) \left( \hat{A}_2 ^{UIA}\right) \nonumber \\&\quad -\,\frac{2(1+\eta \hat{A}_1)\eta \hat{A}_2 \varGamma }{\hat{\sigma } ^2 (1+\rho ) \gamma ^2}-2 (1-\rho )\hat{\sigma }^2 \frac{\hat{B}_2 \hat{B}_3 \varGamma }{\gamma ^2}=0,\end{aligned}$$
(105)
$$\begin{aligned}&\left( \hat{A}_0 ^{UIA}\right) _t + \tilde{r} (1-\gamma )+ \kappa \theta \left( \hat{A}_2^{UIA} \right) + \hat{\sigma }^2 (1-\rho )\frac{\varGamma _1}{\gamma } \hat{B}_2 \hat{B}_2^{UIA} +(1-\gamma )\frac{2\eta ^2 \varGamma _1 \hat{A}_2}{\hat{\sigma }^2 (1+\rho ) \gamma } \hat{A}_2 ^{UIA} \nonumber \\&\quad +\, \hat{\sigma } ^2 (1-\rho ) \left( \hat{B}_1 ^{UIA}\right) +\frac{(1-\rho )\eta ^2 \varGamma _1 }{\rho _1 ^2 \hat{\sigma }^2} \left( \hat{A}_2 ^{UIA}\right) ^2+\frac{\eta ^2 (1-\rho )}{\rho _1 ^2 \hat{\sigma } ^2} \left( \hat{A}_1 ^{UIA}\right) \nonumber \\&\quad +\,\hat{\sigma } ^2 \varGamma _1 (1-\rho )\left( \hat{B}_2 ^{UIA}\right) ^2-\hat{\sigma } ^2 \varGamma \left[ \left( \frac{\hat{A}_2 \eta }{\hat{\sigma } ^2 (1+\rho ) \gamma }\right) ^2+\left( \frac{\hat{B}_2}{\gamma }\right) ^2 (1-\rho ) \right] =0,\end{aligned}$$
(106)
$$\begin{aligned}&\left( \hat{B}_1 ^{UIA}\right) _t+2(1-\gamma )\left[ \frac{\eta (\lambda _2-\lambda _1)\hat{B}_3}{\hat{\sigma } ^2 (1+\rho )\gamma } -\frac{\lambda _1+\lambda _2}{\gamma }\hat{B}_1+\frac{(\lambda _2-\lambda _1)^2}{2\hat{\sigma }^2 (1+\rho ) \gamma } +\frac{(\lambda _1+\lambda _2)^2}{2 \hat{\sigma } ^2 \gamma (1-\rho )}\right. \nonumber \\&\quad +\,\hat{\sigma }^2 (1-\rho )\varGamma _1\left( \frac{2 \hat{B}_1}{\gamma }-\frac{\lambda _1+\lambda _2}{\hat{\sigma }^2 \gamma (1-\rho )}\right) \left( \hat{B}_1 ^{UIA} \right) +\frac{2 \eta ^2 \varGamma _1 \hat{B}_3 \left( \hat{B}_3^{UIA}\right) }{\hat{\sigma }^2 (1+\rho )\gamma }\nonumber \\&\quad +\,\left( \hat{B}_3^{UIA}\right) ^2\varGamma _1 \frac{\eta ^2 (1-\rho )}{\rho _1 ^2 (1-\gamma ) \hat{\sigma }^2} -\hat{\sigma } ^2\varGamma (1+\rho )\left( \frac{\frac{\lambda _2-\lambda _1}{2}+\eta \hat{B}_3}{\hat{\sigma }^2(1+\rho )\gamma }\right) ^2\nonumber \\&\quad -\left. \hat{\sigma } ^2 \varGamma (1-\rho )\left( \frac{\hat{B}_1}{\gamma }+ \hat{\sigma }^2 \varGamma _1 \left( \hat{B}_1^{UIA}\right) ^2\frac{1-\rho }{1-\gamma }- \frac{\lambda _1+\lambda _2}{2 \hat{\sigma }^2 (1-\rho )\gamma }\right) ^2\right] =0, \end{aligned}$$
(107)
$$\begin{aligned}&\left( \hat{B}_2 ^{UIA}\right) _t+(1-\gamma )\left[ \frac{\eta (\lambda _2-\lambda _1) \hat{A}_2}{\hat{\sigma }^2 (1+\rho )\gamma } -\frac{\lambda _1+\lambda _2}{\gamma } \hat{B}_2-\frac{\lambda _1+\lambda _2}{1-\gamma }+\frac{\kappa \theta \left( \hat{B}_3 ^{UIA}\right) }{1-\gamma } \right. \nonumber \\&\,\hat{\sigma }^2(1-\rho )\varGamma _1\left( \frac{2\hat{B}_1 \left( \hat{B}_2 ^{UIA}\right) }{\gamma }+\frac{2\hat{B}_1 \left( \hat{B}_2 ^{UIA}\right) }{\gamma }-\left( \hat{B}_2 ^{UIA}\right) \frac{\lambda _1+\lambda _2}{\hat{\sigma }^2 \gamma (1-\rho )}\right) \nonumber \\&\quad +\,\eta \varGamma _1\frac{2\eta \left( \hat{B}_3 ^{UIA}\right) \hat{A}_1+2\eta \left( \hat{B}_3 ^{UIA}\right) \hat{A}_2}{\hat{\sigma }^2(1+\rho )\gamma }+ 2 \left( \hat{B}_1 ^{UIA}\right) \left( \hat{B}_2 ^{UIA}\right) \hat{\sigma }^2 \varGamma _1 \frac{1-\rho }{1-\gamma }\nonumber \\&\quad +\, 2\left( \hat{A}_2 ^{UIA}\right) \left( \hat{B}_3 ^{UIA}\right) \frac{(1-\rho ) \eta ^2 \varGamma _1}{\rho _1 ^2(1-\gamma )\hat{\sigma }^2}-2\hat{\sigma }^2\varGamma (1-\rho )\left( \frac{\hat{B}_1 \hat{B}_2}{\gamma ^2}\!-\!\frac{\hat{B}_2(\lambda _1\!+\!\lambda _2)}{2\hat{\sigma }^2\gamma (1\!-\!\rho )}\right) \nonumber \\&\quad \!+\left. \frac{2\eta \hat{A}_2 \varGamma }{\hat{\sigma }^2\gamma }(\frac{\eta \hat{B}_3\!+\!\frac{\lambda _2-\lambda _1}{2}}{\hat{\sigma }^2(1+\rho )\gamma }) + \eta \varGamma _1 \frac{\lambda _2-\lambda _1}{\hat{\sigma }^2 (1+\rho )\gamma } \left( \hat{A}_2 ^{UIA} \right) \right] =0,\end{aligned}$$
(108)
$$\begin{aligned}&\left( \hat{B}_3 ^{UIA}\right) _t+(1-\gamma )\left[ (\lambda _2-\lambda _1)(\hat{\sigma }^2 (1+\rho )\gamma )+\frac{2\eta \hat{B}_3}{\hat{\sigma }^2 (1+\rho )\gamma }+\frac{(1+\eta \hat{A}_1)(\lambda _2-\lambda _1)}{\hat{\sigma }^2 (1+\rho )\gamma } \right. \nonumber \\&\quad +\, \hat{\sigma }^2(1-\rho )\varGamma _1\left( \frac{2\hat{B}_1 \left( \hat{B}_3 ^{UIA}\right) }{\gamma }+\frac{2 \hat{B}_3 \left( \hat{B}_1 ^{UIA}\right) }{\gamma }-\frac{\left( \hat{B}_3 ^{UIA}\right) (\lambda _1+\lambda _2)}{\hat{\sigma }^2 \gamma (1-\rho )}\right) \nonumber \\&\quad +\,\eta \varGamma _1 \left( \frac{2\eta \hat{A}_1 \left( \hat{B}_3 ^{UIA}\right) +2\eta \hat{B}_3 \left( \hat{A}_1 ^{UIA}\right) }{\hat{\sigma }^2 (1+\rho )\gamma }+\frac{2 \left( \hat{B}_3 ^{UIA}\right) }{\hat{\sigma }^2 (1+\rho )\gamma }+ \frac{\hat{A}_1 (\lambda _2-\lambda _1)}{\hat{\sigma }^2 (1+\rho )\gamma }\right) \nonumber \\&\quad +\,2\left( \hat{B}_1 ^{UIA}\right) \left( \hat{B}_3 ^{UIA}\right) \hat{\sigma }^2 \varGamma _1 \frac{1-\rho }{1-\gamma }+ 2\left( \hat{A}_1 ^{UIA}\right) \left( \hat{B}_3 ^{UIA}\right) \frac{(1-\rho )\eta ^2 \varGamma _1}{\rho _1^2 (1-\gamma )\hat{\sigma }^2} \nonumber \\&\quad -\,\frac{2\varGamma (1+\eta \hat{A}_1)}{\gamma }\left( \frac{\lambda _2-\lambda _1}{2\hat{\sigma }^2 (1+\rho )\gamma } + \frac{\eta \hat{B}_6}{\hat{\sigma }^2(1+\rho )\gamma }\right) -\frac{\hat{B}_3(\lambda _ 1+\lambda _2)}{\gamma }\nonumber \\&\quad -\left. \frac{\kappa \left( \hat{B}_3 ^{UIA}\right) }{1-\gamma }-2(1-\rho )\hat{\sigma } ^2 \varGamma \frac{\hat{B}_3}{\gamma }\left( \frac{\hat{B}_1}{\gamma } -\frac{\lambda _1+\lambda _2}{2\hat{\sigma }^2 (1-\rho )\gamma }\right) \right] =0, \end{aligned}$$
(109)

with terminal conditions \(\hat{A}_1 ^{UIA}(T) =\hat{A}_2 ^{UIA}(T)=\hat{A}_0 ^{UIA}(T)=\hat{B}_1 ^{UIA}(T)=\hat{B}_2 ^{UIA}(T)=\hat{B}_3 ^{UIA}(T)=0\) and \(\hat{A}_1,\, \hat{A}_2, \,\hat{A}_3,\, \hat{B}_1,\, \hat{B}_2\) and \(\hat{B}_3\) satisfy (82)–(87).

Appendix 5

The parameter estimation of the mispricing model (23)–(25) is quite straightforward since the likelihood function of the observed prices \(X_1(t),X_2(t)\) can be computed explicitly. In fact, \(a(t)\) and \(X(t)\) are Ornstein–Uhlenbeck processes given by

$$\begin{aligned} a(t)&=\theta +(a_0-\theta )e^{-\kappa t}+\sigma _a e^{-\kappa t} \int \limits _0^t e^{\kappa u}dZ_a(u), \end{aligned}$$
(110)
$$\begin{aligned} X(t)&=X_0e^{-(\lambda _1+\lambda _2)t} + be^{-(\lambda _1+\lambda _2)t} \left( \int \limits _0^t e^{(\lambda _1+\lambda _2)u} dZ_1(u) - \int \limits _0^t e^{(\lambda _1+\lambda _2)u} dZ_2(u) \right) . \end{aligned}$$
(111)

Substituting back to (23)–(24), we have

$$\begin{aligned} \ln \left( \frac{P_1(t)}{P_1(0)}\right)&= (2\tilde{r}-\sigma ^2-b^2)t/2 + \int \limits _0^t a(s)ds - \lambda _1 \int \limits _0^t X(s) ds + \sigma Z(t) + b Z_1(t) \\&=\! (2\tilde{r}\!-\!\sigma ^2-b^2)t/2 \!+\! \int \limits _0^t \left( \theta \!+\!(a_0\!-\!\theta )e^{-\kappa s}\!+\!\sigma _a e^{-\kappa s} \int \limits _0^s e^{\kappa u}dZ_a(u) \right) ds \\&\quad - \lambda _1 \int \limits _0^t \left( X_0e^{-(\lambda _1+\lambda _2)s} + be^{-(\lambda _1+\lambda _2)s} \left( \int \limits _0^s e^{(\lambda _1+\lambda _2)u} dZ_1(u) \right. \right. \nonumber \\&\quad \left. \left. - \int \limits _0^s e^{(\lambda _1+\lambda _2)u} dZ_2(u) \right) \right) ds+ \sigma Z(t) + b Z_1(t) \\&= (2\tilde{r}+2\theta -\sigma ^2-b^2)t/2 + (a_0-\theta )(1-e^{-\kappa t})/\kappa \\&\quad -X_0\lambda _1(1-e^{-(\lambda _1+\lambda _2)t})/(\lambda _1+\lambda _2) \\&\quad +\int \limits _0^t \int \limits _u^t \sigma _a e^{\kappa (u-s)} ds \ dZ_a(u)\\&\quad + \int \limits _0^t b \left( 1-\int \limits _u^t \lambda _1 e^{(\lambda _1+\lambda _2)(u-s)}ds \right) dZ_1(u) \\&\quad + \int \limits _0^t \int \limits _u^t \lambda _1 b e^{(\lambda _1+\lambda _2)(u-s)}ds \ dZ_2(u) + \sigma Z(t),\\ \ln \left( \frac{P_2(t)}{P_2(0)}\right)&= (2\tilde{r}-\sigma ^2-b^2)t/2 + \int \limits _0^t a(s)ds + \int \limits _0^t \lambda _2 X(s) ds + \sigma Z(t) + b Z_2(t) \\&=(2\tilde{r}+2\theta -\sigma ^2-b^2)t/2 + (a_0-\theta )(1-e^{-\kappa t})/\kappa \\&\quad + X_0\lambda _2(1-e^{-(\lambda _1+\lambda _2)t})/(\lambda _1+\lambda _2)\\&\quad +\int \limits _0^t \int \limits _u^t \sigma _a e^{\kappa (u-s)} ds \ dZ_a(u)\\&\quad + \int \limits _0^t b \left( 1-\int \limits _u^t \lambda _2 b e^{(\lambda _1+\lambda _2)(u-s)}ds \right) dZ_2(u) \\&\quad + \int \limits _0^t \int \limits _u^t \lambda _2 b e^{(\lambda _1+\lambda _2)(u-s)}ds \ dZ_1(u) + \sigma Z(t). \end{aligned}$$

Let \(Q_1(t)=\ln (P_1(t)/P_1(0))\) and \(Q_2(t)=\ln (P_2(t)/P_2(0))\). The joint distribution of \((Q_1(s),Q_2(s),Q_1(t),Q_2(t))\) with \(s<t\) is bivariate Normal with mean and covariance given by

$$\begin{aligned} E(Q_1(t))&= (2\tilde{r}+2\theta -\sigma ^2-b^2)t/2 + (a_0-\theta )(1-e^{-\kappa t})/ \kappa \nonumber \\&\quad - X_0\lambda _1(1-e^{-(\lambda _1+\lambda _2)t})/(\lambda _1+\lambda _2), \end{aligned}$$
(112)
$$\begin{aligned} E(Q_2(t))&= (2\tilde{r}+2\theta -\sigma ^2-b^2)t/2 + (a_0-\theta )(1-e^{-\kappa t})/ \kappa \nonumber \\&\quad + X_0\lambda _2(1-e^{-(\lambda _1+\lambda _2)t})/(\lambda _1+\lambda _2), \end{aligned}$$
(113)
$$\begin{aligned} Cov(Q_1(s),Q_1(t))&= I_1(s,t)+I_2(s,t,\lambda _1,\lambda _1)+I_5(s,t,\lambda _1,\lambda _1) + \sigma ^2 s, \end{aligned}$$
(114)
$$\begin{aligned} Cov(Q_2(s),Q_2(t))&= I_1(s,t)+I_2(s,t,\lambda _2,\lambda _2)+I_5(s,t,\lambda _2,\lambda _2) + \sigma ^2 s, \end{aligned}$$
(115)
$$\begin{aligned} Cov(Q_1(s),Q_2(t))&= I_1(s,t)+I_3(s,t,\lambda _1,\lambda _2)+I_4(s,t,\lambda _1,\lambda _2) + \sigma ^2 s, \end{aligned}$$
(116)
$$\begin{aligned} Cov(Q_2(s),Q_1(t))&= I_1(s,t)+I_3(s,t,\lambda _2,\lambda _1)+I_4(s,t,\lambda _2,\lambda _1) + \sigma ^2 s, \end{aligned}$$
(117)

where

$$\begin{aligned} I_1(s,t)&\!=\! \int \limits _0^s \left( \int \limits _u^s \sigma _a \exp (\kappa (u-v)) \, dv\right) \left( \int \limits _u^t \sigma _a \exp (\kappa (u-v)) \, dv \right) du \nonumber \\&= -\frac{\sigma _a^2 e^{-\kappa (s+t)} \left( (2-2 \kappa s) e^{\kappa (s+t)}-2 e^{\kappa s}+e^{2 \kappa s}-2 e^{\kappa t}+1\right) }{2 k^3},\end{aligned}$$
(118)
$$\begin{aligned} I_2(s,t,c,d)&= \int \limits _0^s b^2 \left( 1-c \int \limits _u^s \exp \left( -\left( \lambda _1+\lambda _2\right) (u-v)\right) \, dv\right) \nonumber \\&\times \left( 1-d \int \limits _u^t \exp \left( -\left( \lambda _1+\lambda _2\right) (u-v)\right) \, dv\right) \, du \nonumber \\&= \frac{b^2}{2 \left( \lambda _1+\lambda _2\right) {}^3} \left( c d \left( -2 e^{\left( \lambda _1+\lambda _2\right) s}+e^{\left( \lambda _1+\lambda _2\right) (t-s)}+e^{\left( \lambda _1+\lambda _2\right) (s+t)} \right. \right. \nonumber \\&-\left. 2 e^{\left( \lambda _1+\lambda _2\right) t}+2\right) +2 \left( \lambda _1+\lambda _2\right) \left( \left( \lambda _1+\lambda _2\right) s \left( c+d+\lambda _1+\lambda _2\right) +c d s\right. \nonumber \\&\left. +\left. c \left( -e^{\left( \lambda _1+\lambda _2\right) s}\right) +c+d e^{\left( \lambda _1+\lambda _2\right) (t-s)}-d e^{\left( \lambda _1+\lambda _2\right) t}\right) \right) ,\end{aligned}$$
(119)
$$\begin{aligned} I_3(s,t,c,d)&= \int \limits _0^s b^2 \left( 1-c \int \limits _u^s \exp \left( -\left( \lambda _1+\lambda _2\right) (u-v)\right) \, dv\right) \nonumber \\&\times \left( d \int \limits _u^t \exp \left( -\left( \lambda _1+\lambda _2\right) (u-v)\right) \, dv\right) \, du \nonumber \\&= \frac{b^2 d}{2 \left( \lambda _1+\lambda _2\right) {}^3} \left( 2 c e^{\left( \lambda _1+\lambda _2\right) s}-c e^{\left( \lambda _1+\lambda _2\right) (s+t)}+ 2 \left( c+\lambda _1+\lambda _2\right) e^{\left( \lambda _1+\lambda _2\right) t} \right. \nonumber \\&+\, e^{\left( \lambda _1+\lambda _2\right) (-s)} \left( -2 c e^{\left( \lambda _1+\lambda _2\right) s}-2 \left( \lambda _1+\lambda _2\right) s \left( c+\lambda _1+\lambda _2\right) e^{\left( \lambda _1+\lambda _2\right) s}\right. \nonumber \\&\left. +\left. c e^{\left( \lambda _1+\lambda _2\right) t}-2 \left( c+\lambda _1+\lambda _2\right) e^{\left( \lambda _1+\lambda _2\right) t}\right) \right) ,\end{aligned}$$
(120)
$$\begin{aligned} I_4(s,t,c,d)&= \int \limits _0^s b^2 \left( c \int \limits _u^s \exp \left( -\left( \lambda _1+\lambda _2\right) (u-v)\right) \, dv\right) \nonumber \\&\times \left( 1-d \int \limits _u^t \exp \left( -\left( \lambda _1+\lambda _2\right) (u-v)\right) \, dv\right) \, du \nonumber \\&= \frac{b^2 c}{2 \left( \lambda _1+\lambda _2\right) {}^3} \left( 2 \left( d+\lambda _1+\lambda _2\right) e^{\left( \lambda _1+\lambda _2\right) s}-d e^{\left( \lambda _1+\lambda _2\right) (s+t)} +2 d e^{\left( \lambda _1+\lambda _2\right) t} \right. \nonumber \\&+\,e^{\left( \lambda _1+\lambda _2\right) (-s)} \left( -2 \left( d+\lambda _1+\lambda _2\right) e^{\left( \lambda _1+\lambda _2\right) s}\right. \nonumber \\&\left. -\left. 2 \left( \lambda _1+\lambda _2\right) s \left( d+\lambda _1+\lambda _2\right) e^{\left( \lambda _1+\lambda _2\right) s}-d e^{\left( \lambda _1+\lambda _2\right) t}\right) \right) , \end{aligned}$$
(121)
$$\begin{aligned} I_5(s,t,c,d)&= \int \limits _0^s b^2 \left( c \int \limits _u^s \exp \left( -\left( \lambda _1+\lambda _2\right) (u-v)\right) \, dv\right) \nonumber \\&\times \left( d \int \limits _u^t \exp \left( -\left( \lambda _1+\lambda _2\right) (u-v)\right) \, dv\right) \, du \nonumber \\&= \frac{b^2 c d}{2 \left( \lambda _1+\lambda _2\right) {}^3} \left( 2 \lambda _1 s+2 \lambda _2 s+e^{\left( \lambda _1+\lambda _2\right) (-(s-t))} \left( \left( e^{\left( \lambda _1+\lambda _2\right) s}-1\right) {}^2\right. \right. \nonumber \\&\left. \quad -\left. 2 e^{\left( \lambda _1+\lambda _2\right) (2 s-t)}\right) +2\right) . \end{aligned}$$
(122)

Given the historical stock prices \(\{P_1(t_i),P_2(t_i)\}_{i=1}^n\), we can obtain \(\{Q_1(t_i),Q_2(t_i)\}_{i=1}^n\) and they have multivariate Normal distribution with mean and covariance matrix by (112)–(122). The parameters can be then estimated by maximizing the likelihood function of \(\{Q_1(t_i),Q_2(t_i)\}\) subject to the constraints \(\lambda _1+\lambda _2>0 \text { and } b,\sigma ,\sigma _a,\kappa >0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, B., Viens, F., Law, B. et al. Dynamic portfolio selection with mispricing and model ambiguity. Ann Finance 11, 37–75 (2015). https://doi.org/10.1007/s10436-014-0252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10436-014-0252-y

Keywords

JEL Classification

Navigation