Skip to main content
Log in

Efficient multi-material topology optimization design with minimum compliance based on ResUNet involved generative adversarial network

基于引入ResUNet生成对抗式网络以柔度最小为目标的高效多材料拓扑优化设计

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Topology optimization is a common approach for material distribution in continuous structure due to its rigorous mathematical theory. However, with the increase of material types in design domain, the computational efficiency of traditional topology optimization for multiple materials problem is greatly decreased. In this paper, a novel deep learning-based topology optimization method is proposed to achieve multi-material structural design for improving computational efficiency. A large number of multi-material topological configurations are simulated by solid isotropic material with penalization (SIMP), to construct multi-material topology optimization dataset. Subsequently, ResUNet involved generative adversarial network (ResUNet-GAN) is developed for high-dimensional mapping from design parameters to the corresponding multi-material topological configuration. Finally, the ResUNet-GAN, trained by the multi-material dataset, is utilized to design multi-material topological configuration. Numerical simulations verify that the well-trained ResUNet-GAN is successfully applied to three types of cases: the cantilever beam with double materials, the cantilever beam with triple materials, and the half-MBB with triple materials. The deep learning-based topology optimization approach is superior to the conventional methods in terms of higher computational efficiency, performing the potential of such a data-driven method to accelerate the calculation of structural optimization design.

摘要

拓扑优化由于其严格的数学理论, 成为连续结构设计中决定材料分布的重要方法. 然而, 随着材料类型在设计域内的增加, 传统拓扑优化方法的计算效率大大降低. 本文提出了一种基于深度学习的拓扑优化方法, 用于提高多材料结构拓扑优化设计的计算效率. 首先, 利用固体各向同性材料惩罚(SIMP)方法对大量多材料结构进行优化设计, 构建了多材料拓扑优化数据集. 其次, ResUNet被引入生成对抗式网络形成ResUNet-GAN, 构建了设计参数和优化构型之间的高维映射. 最后, 利用预训练的ResUNet-GAN实现多材料拓扑优化设计. 数值模拟验证了ResUNet-GAN成功地应用于双材料的悬臂梁、三材料悬臂梁、三材料简支梁结构的拓扑优化设计. 研究表明, 基于深度学习拓扑优化方法的计算效率优于传统方法, 为高效拓扑优化设计的发展奠定了理论基础.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. H. Zhu, W. H. Zhang, and L. Xia, Topology optimization in aircraft and aerospace structures design, Arch. Computat. Methods Eng. 23, 595 (2016).

    Article  MathSciNet  Google Scholar 

  2. J. Wong, L. Ryan, and I. Y. Kim, Design optimization of aircraft landing gear assembly under dynamic loading, Struct. Multidisc. Optim. 57, 1357 (2018).

    Article  Google Scholar 

  3. X. Zhang, H. Ye, N. Wei, R. Tao, and Z. Luo, Design optimization of multifunctional metamaterials with tunable thermal expansion and phononic bandgap, Mater. Des. 209, 109990 (2021).

    Article  Google Scholar 

  4. D. J. Munk, T. Kipouros, and G. A. Vio, Multi-physics bi-directional evolutionary topology optimization on GPU-architecture, Eng. Comput. 35, 1059 (2019).

    Article  Google Scholar 

  5. R. Tavakoli, Multimaterial topology optimization by volume constrained Allen-Cahn system and regularized projected steepest descent method, Comput. Methods Appl. Mech. Eng. 276, 534 (2014).

    Article  MathSciNet  Google Scholar 

  6. B. Hassani, and E. Hinton, A review of homogenization and topology optimization I-homogenization theory for media with periodic structure, Comput. Struct. 69, 707 (1998).

    Article  Google Scholar 

  7. B. Hassani, and E. Hinton, A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations, Comput. Struct. 69, 719 (1998).

    Article  Google Scholar 

  8. B. Hassani, and E. Hinton, A review of homogenization and topology optimization III—topology optimization using optimality criteria, Comput. Struct. 69, 739 (1998).

    Article  Google Scholar 

  9. Q. Chen, X. Zhang, and B. Zhu, A 213-line topology optimization code for geometrically nonlinear structures, Struct. Multidisc. Optim. 59, 1863 (2019).

    Article  MathSciNet  Google Scholar 

  10. F. Ferrari, and O. Sigmund, A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D, Struct. Multidisc. Optim. 62, 2211 (2020).

    Article  MathSciNet  Google Scholar 

  11. F. Ferrari, O. Sigmund, and J. K. Guest, Topology optimization with linearized buckling criteria in 250 lines of Matlab, Struct. Multidisc. Optim. 63, 3045 (2021).

    Article  MathSciNet  Google Scholar 

  12. M. Yaghmaei, A. Ghoddosian, and M. M. Khatibi, A filter-based level set topology optimization method using a 62-line MATLAB code, Struct. Multidisc. Optim. 62, 1001 (2020).

    Article  MathSciNet  Google Scholar 

  13. A. Laurain, A level set-based structural optimization code using FEniCS, Struct. Multidisc. Optim. 58, 1311 (2018).

    Article  MathSciNet  Google Scholar 

  14. P. Wei, Z. Li, X. Li, and M. Y. Wang, An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions, Struct. Multidisc. Optim. 58, 831 (2018).

    Article  MathSciNet  Google Scholar 

  15. C. Kim, M. Jung, T. Yamada, S. Nishiwaki, and J. Yoo, FreeFEM++ code for reaction-diffusion equation-based topology optimization: for high-resolution boundary representation using adaptive mesh refinement, Struct. Multidisc. Optim. 62, 439 (2020).

    Article  MathSciNet  Google Scholar 

  16. X. Huang, and Y. M. Xie, A further review of ESO type methods for topology optimization, Struct. Multidisc. Optim. 41, 671 (2010).

    Article  Google Scholar 

  17. Z. H. Zuo, and Y. M. Xie, A simple and compact Python code for complex 3D topology optimization, Adv. Eng. Software 85, 1 (2015).

    Article  Google Scholar 

  18. L. Xia, and P. Breitkopf, Design of materials using topology optimization and energy-based homogenization approach in Matlab, Struct. Multidisc. Optim. 52, 1229 (2015).

    Article  MathSciNet  Google Scholar 

  19. W. Zhang, J. Yuan, J. Zhang, and X. Guo, A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model, Struct. Multidisc. Optim. 53, 1243 (2016).

    Article  MathSciNet  Google Scholar 

  20. X. Jiang, C. Liu, Z. Du, W. Huo, X. Zhang, F. Liu, and X. Guo, A unified framework for explicit layout/topology optimization of thin-walled structures based on Moving Morphable Components (MMC) method and adaptive ground structure approach, Comput. Methods Appl. Mech. Eng. 396, 115047 (2022).

    Article  MathSciNet  Google Scholar 

  21. H. Ye, B. Yuan, J. Li, X. Zhang, and Y. Sui, Geometrically nonlinear topology optimization of continuum structures based on an independent continuous mapping method, Acta Mech. Solid Sin. 34, 658 (2021).

    Article  Google Scholar 

  22. W. Wang, H. Ye, and Y. Sui, Lightweight topology optimization with buckling and frequency constraints using the independent continuous mapping method, Acta Mech. Solid Sin. 32, 310 (2019).

    Article  Google Scholar 

  23. H. L. Ye, X. Zhang, and N. Wei, Topology optimization design of adjustable thermal expansion metamaterial based on independent continuous variables, Int. J. Appl. Mech. 13, 2150032 (2021).

    Article  Google Scholar 

  24. X. Zhang, A. Takezawa, and Z. Kang, Robust topology optimization of vibrating structures considering random diffuse regions via a phase-field method, Comput. Methods Appl. Mech. Eng. 344, 766 (2019).

    Article  MathSciNet  Google Scholar 

  25. Q. Yu, K. Wang, B. Xia, and Y. Li, First and second order unconditionally energy stable schemes for topology optimization based on phase field method, Appl. Math. Comput. 405, 126267 (2021).

    MathSciNet  Google Scholar 

  26. O. Sigmund, and S. Torquato, Composites with extremal thermal expansion coefficients, Appl. Phys. Lett. 69, 3203 (1996).

    Article  Google Scholar 

  27. O. Sigmund, and S. Torquato, Design of smart composite materials using topology optimization, Smart Mater. Struct. 8, 365 (1999).

    Article  Google Scholar 

  28. L. V. Gibiansky, and O. Sigmund, Multiphase composites with extremal bulk modulus, J. Mech. Phys. Solids 48, 461 (2000).

    Article  MathSciNet  Google Scholar 

  29. P. Wei, and M. Y. Wang, Piecewise constant level set method for structural topology optimization, Int. J. Numer. Meth. Eng. 78, 379 (2009).

    Article  MathSciNet  Google Scholar 

  30. M. Y. Wang, and X. Wang, A level-set based variational method for design and optimization of heterogeneous objects, Comput.-Aided Des. 37, 321 (2005).

    Article  Google Scholar 

  31. Z. Luo, L. Tong, J. Luo, P. Wei, and M. Y. Wang, Design of piezoelectric actuators using a multiphase level set method of piecewise constants, J. Comput. Phys. 228, 2643 (2009).

    Article  MathSciNet  Google Scholar 

  32. J. Park, and A. Sutradhar, A multi-resolution method for 3D multimaterial topology optimization, Comput. Methods Appl. Mech. Eng. 285, 571 (2015).

    Article  Google Scholar 

  33. M. Y. Wang, and X. Wang, “Color” level sets: a multi-phase method for structural topology optimization with multiple materials, Comput. Methods Appl. Mech. Eng. 193, 469 (2004).

    Article  MathSciNet  Google Scholar 

  34. H. L. Ye, Z. J. Dai, W. W. Wang, and Y. K. Sui, ICM method for topology optimization of multimaterial continuum structure with displacement constraint, Acta Mech. Sin. 35, 552 (2019).

    Article  MathSciNet  Google Scholar 

  35. W. Wang, H. Ye, Z. Li, and Y. Sui, Stiffness and strength topology optimization for bi-disc systems based on dual sequential quadratic programming, Numer. Meth Eng. 123, 4073 (2022).

    Article  MathSciNet  Google Scholar 

  36. Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521, 436 (2015).

    Article  Google Scholar 

  37. A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, Generative adversarial networks: An overview, IEEE Signal Process. Mag. 35, 53 (2018).

    Article  Google Scholar 

  38. J. Rade, A. Balu, E. Herron, J. Pathak, R. Ranade, S. Sarkar, and A. Krishnamurthy, Algorithmically-consistent deep learning frameworks for structural topology optimization, Eng. Appl. Artif. Intell. 106, 104483 (2021).

    Article  Google Scholar 

  39. S. Bonfanti, R. Guerra, F. Font-Clos, D. Rayneau-Kirkhope, and S. Zapperi, Automatic design of mechanical metamaterial actuators, Nat. Commun. 11, 4162 (2020).

    Article  Google Scholar 

  40. S. Lee, J. Ha, M. Zokhirova, H. Moon, and J. Lee, Background information of deep learning for structural engineering, Arch. Computat. Methods Eng. 25, 121 (2018).

    Article  MathSciNet  Google Scholar 

  41. I. Sosnovik, and I. Oseledets, Neural networks for topology optimization, Rus. J. Numer. Anal. Math. Model. 34, 215 (2019).

    Article  MathSciNet  Google Scholar 

  42. Q. Lin, J. Hong, Z. Liu, B. Li, and J. Wang, Investigation into the topology optimization for conductive heat transfer based on deep learning approach, Int. Commun. Heat Mass Transfer 97, 103 (2018).

    Article  Google Scholar 

  43. H. L. Ye, J. C. Li, B. S. Yuan, N. Wei, and Y. K. Sui, Acceleration design for continuum topology optimization by using pix2pix neural network, Int. J. Appl. Mech. 13, 2150042 (2021).

    Article  Google Scholar 

  44. N. A. Kallioras, G. Kazakis, and N. D. Lagaros, Accelerated topology optimization by means of deep learning, Struct. Multidisc. Optim. 62, 1185 (2020).

    Article  MathSciNet  Google Scholar 

  45. Y. Yu, T. Hur, J. Jung, and I. G. Jang, Deep learning for determining a near-optimal topological design without any iteration, Struct. Multi-disc. Optim. 59, 787 (2019).

    Article  Google Scholar 

  46. S. Zheng, H. Fan, Z. Zhang, Z. Tian, and K. Jia, Accurate and realtime structural topology prediction driven by deep learning under moving morphable component-based framework, Appl. Math. Model. 97, 522 (2021).

    Article  MathSciNet  Google Scholar 

  47. J. Li, H. Ye, X. Zhang, and N. Wei, Adjustable mechanical properties design of microstructure by using generative and adversarial network with gradient penalty, Mech. Adv. Mater. Struct. (2022).

  48. H. Deng, and A. C. To, Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design, Comput. Mech. 66, 449 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11872080) and the Natural Science Foundation of Beijing, China (Grant No. 3192005)

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Jicheng Li completed the theoretical model and analytical calculations and wrote the draft of the manuscript. Hongling Ye provided a critical review and directed the execution of the entire study. Nan Wei helped with the code implementation. Yongjia Dong helped with the data collection. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Hongling Ye  (叶红玲).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ye, H., Wei, N. et al. Efficient multi-material topology optimization design with minimum compliance based on ResUNet involved generative adversarial network. Acta Mech. Sin. 40, 423185 (2024). https://doi.org/10.1007/s10409-023-23185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23185-x

Navigation